Showing 1 - 10 of 26
This paper presents results from a Monte Carlo study concerning inference with spatially dependent data. It investigates the impact of location/distance measurement errors upon the accuracy of parametric and nonparametric estimators of asymptotic variances.
Persistent link: https://www.econbiz.de/10010318491
This chapter presents key concepts and theoretical results for analyzing estimation and inference in high-dimensional models. High-dimensional models are characterized by having a number of unknown parameters that is not vanishingly small relative to the sample size. We first present results in...
Persistent link: https://www.econbiz.de/10011941486
We study a panel data model with general heterogeneous effects, where slopes are allowed to be varying across both individuals and times. The key assumption for dimension reduction is that the heterogeneous slopes can be expressed as a factor structure so that the high-dimensional slope matrix...
Persistent link: https://www.econbiz.de/10012146383
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010288296
We develop results for the use of LASSO and Post-LASSO methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p, that apply even when p is much larger than the sample size, n. We rigorously develop asymptotic...
Persistent link: https://www.econbiz.de/10010288391
We revisit the classic semiparametric problem of inference on a low di-mensional parameter Ø0 in the presence of high-dimensional nuisance parameters Û0. We depart from the classical setting by allowing for Û0 to be so high-dimensional that the traditional assumptions, such as Donsker...
Persistent link: https://www.econbiz.de/10011941471
Instrumental variables are often associated with low estimator precision. This paper explores efficiency gains which might be achievable using moment conditions which are nonlinear in the disturbances and are based on flexible parametric families for error distributions. We show that these...
Persistent link: https://www.econbiz.de/10010318454
Using many valid instrumental variables has the potential to improve efficiency but makes the usual inference procedures inaccurate. We give corrected standard errors, an extension of Bekker (1994) to nonnormal disturbances, that adjust for many instruments. We find that this adujstment is...
Persistent link: https://www.econbiz.de/10010318460
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010318684
In this article, we review quantile models with endogeneity. We focus on models that achieve indentification through the use of instrumental variables and discuss conditions under which partial and point identification are obtained. We discuss key conditions, which include monotonicity and...
Persistent link: https://www.econbiz.de/10010318721