Showing 1 - 10 of 289
Persistent link: https://www.econbiz.de/10013502012
Persistent link: https://www.econbiz.de/10014007039
Persistent link: https://www.econbiz.de/10012105567
Persistent link: https://www.econbiz.de/10014321174
This paper extends the Baltagi et al. (2018, 2021) static and dynamic ?-contamination papers to dynamic space-time models. We investigate the robustness of Bayesian panel data models to possible misspecification of the prior distribution. The proposed robust Bayesian approach departs from the...
Persistent link: https://www.econbiz.de/10014296559
The paper develops a general Bayesian framework for robust linear static panel data models using epsilon-contamination. A two-step approach is employed to derive the conditional type II maximum likelihood (ML-II) posterior distribution of the coefficients and individual effects. The ML-II...
Persistent link: https://www.econbiz.de/10015245006
The paper develops a general Bayesian framework for robust linear static panel data models using ε-contamination. A two-step approach is employed to derive the conditional type-II maximum likelihood (ML-II) posterior distribution of the coefficients and individual effects. The ML-II posterior...
Persistent link: https://www.econbiz.de/10010468186
Persistent link: https://www.econbiz.de/10012141615
Persistent link: https://www.econbiz.de/10012141740
This paper extends the work of Baltagi et al. (2018) to the popular dynamic panel data model. We investigate the robustness of Bayesian panel data models to possible misspecication of the prior distribution. The proposed robust Bayesian approach departs from the standard Bayesian framework in...
Persistent link: https://www.econbiz.de/10012269892