Showing 1 - 10 of 66
Persistent link: https://www.econbiz.de/10001744657
A shrinkage type estimator is introduced which has favorable properties in binary regression. Although binary observations are never very far away from the underlying probability, in all interesting cases there is a non-zero distance between observation and underlying mean. The proposed response...
Persistent link: https://www.econbiz.de/10002531329
Persistent link: https://www.econbiz.de/10001744444
A flexible semiparametric class of models is introduced that offers an alternative to classical regression models for count data as the Poisson and Negative Binomial model, as well as to more general models accounting for excess zeros that are also based on fixed distributional assumptions. The...
Persistent link: https://www.econbiz.de/10014497517
In this paper R2-type measures of the explanatory power of multivariate linear and categorical probit models proposed in the literature are reviewed and their deficiencies are discussed. It is argued that a measure of the explanatory power should take into account the components which are...
Persistent link: https://www.econbiz.de/10010260799
Additive models of the type y=f_1(x_1)+...+f_p(x_p)+e where f_j,j=1,...,p, have unspecified functional form, are flexible statistical regression models which can be used to characterize nonlinear regression effects. The basic tools used for fitting the additive model are the expansion in...
Persistent link: https://www.econbiz.de/10010265642
Various supervised learning and gene selection methods have been used for cancer diagnosis. Most of these methods do not consider interactions between genes, although this might be interesting biologically and improve classification accuracy. Here we introduce a new CART-based method to discover...
Persistent link: https://www.econbiz.de/10010265643
A shrinkage type estimator is introduced which has favorable properties in binary regression. Although binary observations are never very far away from the underlying probability, in all interesting cases there is a non-zero distance between observation and underlying mean. The proposed response...
Persistent link: https://www.econbiz.de/10010265645
Principal components are a well established tool in dimension reduction. The extension to principal curves allows for general smooth curves which pass through the middle of a p-dimensional data cloud. In this paper local principal curves are introduced, which are based on the localization of...
Persistent link: https://www.econbiz.de/10010265647
The main problem with localized discriminant techniques is the curse of dimensionality, which seems to restrict their use to the case of few variables. This restriction does not hold if localization is combined with a reduction of dimension. In particular it is shown that localization yields...
Persistent link: https://www.econbiz.de/10010266137