Showing 1 - 10 of 1,778
Most multivariate variance models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on multivariate models with...
Persistent link: https://www.econbiz.de/10008552167
In the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. Recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. In this paper, we provide an empirical comparison of a set of models, namely BEKK,...
Persistent link: https://www.econbiz.de/10009643473
Most multivariate variance or volatility models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on...
Persistent link: https://www.econbiz.de/10009651876
DAMGARCH is a new model that extends the VARMA-GARCH model of Ling and McAleer (2003) by introducing multiple thresholds and time-dependent structure in the asymmetry of the conditional variances. Analytical expressions for the news impact surface implied by the new model are also presented....
Persistent link: https://www.econbiz.de/10008752709
DAMGARCH is a new model that extends the VARMA-GARCH model of Ling and McAleer (2003) by introducing multiple thresholds and time-dependent structure in the asymmetry of the conditional variances. Analytical expressions for the news impact surface implied by the new model are also presented....
Persistent link: https://www.econbiz.de/10008465226
The purpose of the paper is to discuss ten things potential users should know about the limits of the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. The reasons given for caution about the use of DCC include the...
Persistent link: https://www.econbiz.de/10010326200
The purpose of the paper is to discuss ten things potential users should know about the limits of the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. The reasons given for caution about the use of DCC include the...
Persistent link: https://www.econbiz.de/10010326244
Most multivariate variance or volatility models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on...
Persistent link: https://www.econbiz.de/10010326487
The purpose of the paper is to discuss ten things potential users should know about the limits of the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. The reasons given for caution about the use of DCC include the...
Persistent link: https://www.econbiz.de/10010421297
The energy sector is one of the most important in the world, so that time series fluctuations in leading energy sources have been analysed widely. As the leading energy commodities are traded on international stock exchanges, the analysis of the fluctuations in stock and financial derivatives...
Persistent link: https://www.econbiz.de/10011451515