Showing 1 - 10 of 65
We present a numerical method for pricing derivatives on electricity prices. The method is based on approximating the generator of the underlying process and can be applied for stochastic processes that are combinations of diusions and jump processes. The method is accurate even in the case of...
Persistent link: https://www.econbiz.de/10015240236
Persistent link: https://www.econbiz.de/10009570404
In the first quarter of 2006 Chicago Board Options Exchange (CBOE) introduced, as one of the listed products, options on its implied volatility index (VIX). This opened the challenge of developing a pricing framework that can simultaneously handle European options, forward-starts, options on the...
Persistent link: https://www.econbiz.de/10015240232
Persistent link: https://www.econbiz.de/10009407653
It is well documented that a model for the underlying asset price process that seeks to capture the behaviour of the market prices of vanilla options needs to exhibit both diffusion and jump features. In this paper we assume that the asset price process S is Markov with càdlàg paths and...
Persistent link: https://www.econbiz.de/10013159843
Persistent link: https://www.econbiz.de/10009407684
Persistent link: https://www.econbiz.de/10008486945
Let $\sigma_t(x)$ denote the implied volatility at maturity $t$ for a strike $K=S_0 e^{xt}$, where $x\in\bbR$ and $S_0$ is the current value of the underlying. We show that $\sigma_t(x)$ has a uniform (in $x$) limit as maturity $t$ tends to infinity, given by the formula...
Persistent link: https://www.econbiz.de/10009251484
In this paper we introduce a simple continuous-time asset pricing framework, based on general multi-dimensional diffusion processes, that combines semi-analytic pricing with a nonlinear specification for the market price of risk. Our framework guarantees existence of weak solutions of the...
Persistent link: https://www.econbiz.de/10008567932
The {\em drawdown} process $Y$ of a completely asymmetric L\'{e}vy process $X$ is equal to $X$ reflected at its running supremum $\bar{X}$: $Y = \bar{X} - X$. In this paper we explicitly express in terms of the scale function and the L\'{e}vy measure of $X$ the law of the sextuple of the...
Persistent link: https://www.econbiz.de/10008866083