Showing 1 - 10 of 580
This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a...
Persistent link: https://www.econbiz.de/10010306996
This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a...
Persistent link: https://www.econbiz.de/10009367897
Persistent link: https://www.econbiz.de/10003906966
This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a...
Persistent link: https://www.econbiz.de/10003854423
Persistent link: https://www.econbiz.de/10009734919
This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a...
Persistent link: https://www.econbiz.de/10013316350
We use a Tullock-type contest model to show that intuitively and structurally different contests can be strategically and revenue equivalent to each other. We consider a two-player contest, where outcome-contingent payoffs are linear functions of prizes, own effort, and the effort of the rival....
Persistent link: https://www.econbiz.de/10008556046
We construct a generalized Tullock contest under complete information where contingent upon winning or losing, the payoff of a player is a linear function of prizes, own effort, and the effort of the rival. This structure nests a number of existing contests in the literature and can be used to...
Persistent link: https://www.econbiz.de/10008556050
This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a...
Persistent link: https://www.econbiz.de/10005034634
We analyze a group contest in which n groups compete to win a group-specific public good prize. Group sizes can be different and any player may value the prize differently within and across groups. Players exert costly efforts simultaneously and independently. Only the highest effort (the...
Persistent link: https://www.econbiz.de/10014177320