Showing 1 - 10 of 11,336
This paper analyzes the higher-order properties of nested pseudo-likelihood (NPL) estimators and their practical implementation for parametric discrete Markov decision models in which the probability distribution is defined as a fixed point. We propose a new NPL estimator that can achieve...
Persistent link: https://www.econbiz.de/10010292031
This paper analyzes the higher-order properties of nested pseudo-likelihood (NPL) estimators and their practical implementation for parametric discrete Markov decision models in which the probability distribution is defined as a fixed point. We propose a new NPL estimator that can achieve...
Persistent link: https://www.econbiz.de/10011940681
This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d_0 are included. The results establish that the bootstrap...
Persistent link: https://www.econbiz.de/10005464054
It is well known that a one-step scoring estimator that starts from any N^{1/2}-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k = 1, higher-order asymptotic...
Persistent link: https://www.econbiz.de/10004990703
This paper provides bounds on the errors in coverage probabilities of maximum likelihood-based, percentile-t, parametric bootstrap confidence intervals for Markov time series processes. These bounds show that the parametric bootstrap for Markov time series provides higher-order improvements...
Persistent link: https://www.econbiz.de/10005093948
The asymptotic refinements attributable to the block bootstrap for time series are not as large as those of the nonparametric iid bootstrap or the parametric bootstrap. One reason is that the independence between the blocks in the block bootstrap sample does not mimic the dependence structure of...
Persistent link: https://www.econbiz.de/10005593249
This paper considers an empirical likelihood method to estimate the parameters of the quantile regression (QR) models and to construct confidence regions that are accurate in finite samples. To achieve the higher-order refinements, we smooth the estimating equations for the empirical likelihood....
Persistent link: https://www.econbiz.de/10005593469
This paper establishes the higher-order equivalence of the k-step bootstrap, introduced recently by Davidson and MacKinnon (1999a), and the standard bootstrap. The k-step bootstrap is a very attractive alternative computationally to the standard bootstrap for statistics based on nonlinear...
Persistent link: https://www.econbiz.de/10005593591
This paper analyzes the higher-order properties of nested pseudo-likelihood (NPL) estimators and their practical implementation for parametric discrete Markov decision models in which the probability distribution is defined as a fixed point. We propose a new NPL estimator that can achieve...
Persistent link: https://www.econbiz.de/10005688568
In panel data econometrics the Hausman test is of central importance to select an e?cient estimator of the models' slope parameters. When testing the null hypothesis of no correlation between unobserved heterogeneity and observable explanatory variables by means of the Hausman test model...
Persistent link: https://www.econbiz.de/10010296293