Showing 1 - 10 of 1,566
Most multivariate variance or volatility models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on...
Persistent link: https://www.econbiz.de/10009652057
A wide variety of conditional and stochastic variance models has been used to estimate latent volatility (or risk). In this paper, we propose a new long memory asymmetric volatility model which captures more flexible asymmetric patterns as compared with several existing models. We extend the new...
Persistent link: https://www.econbiz.de/10009291889
The paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (wDCC) model. The paper applies the wDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models. We use the standardized multivariate t-distribution to accommodate...
Persistent link: https://www.econbiz.de/10009291890
Several methods have recently been proposed in the ultra high frequency financial literature to remove the effects of microstructure noise and to obtain consistent estimates of the integrated volatility (IV) as a measure of ex-post daily volatility. Even bias-corrected and consistent realized...
Persistent link: https://www.econbiz.de/10008915753
The paper proposes a general asymmetric multifactor Wishart stochastic volatility (AMWSV) diffusion process which accommodates leverage, feedback effects and multifactor for the covariance process. The paper gives the closed-form solution for the conditional and unconditional Laplace transform...
Persistent link: https://www.econbiz.de/10010326219
There has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous timefractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of the FIWSV...
Persistent link: https://www.econbiz.de/10010326243
Most multivariate variance or volatility models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on...
Persistent link: https://www.econbiz.de/10010326487
Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates asymmetry and long memory....
Persistent link: https://www.econbiz.de/10010377197
The paper investigates the impact of jumps in forecasting co-volatility, accommodating leverage effects. We modify the jump-robust two time scale covariance estimator of Boudt and Zhang (2013)such that the estimated matrix is positive definite. Using this approach we can disentangle the...
Persistent link: https://www.econbiz.de/10010491398
For forecasting volatility of futures returns, the paper proposes an indirect method based on the relationship between futures and the underlying asset for the returns and time-varying volatility. For volatility forecasting, the paper considers the stochastic volatility model with asymmetry and...
Persistent link: https://www.econbiz.de/10011662515