Showing 1 - 10 of 31
This paper studies the topological approach to social choice theory initiated by G. Chichilnisky (1980), extending it to the case of a continuum of agents. The social choice rules are continuous anonymous maps defined on preference spaces which respect unanimity. We establish that a social...
Persistent link: https://www.econbiz.de/10005369389
Persistent link: https://www.econbiz.de/10005388393
Persistent link: https://www.econbiz.de/10005122466
We show that any complete, lower-semicontinuous, and translation-invariant preorder defined on a topological vector space admits a linear and continuous utility representation.
Persistent link: https://www.econbiz.de/10005371170
We show that any complete, lower-semicontinuous, and translation- invariant preorder defined on a topological vector space admits a linear and continuous utility representation.
Persistent link: https://www.econbiz.de/10005753444
Persistent link: https://www.econbiz.de/10005280335
Persistent link: https://www.econbiz.de/10005364788
The purpose of this addendum is to correct some results published in our paper "Some issues related to the topological aggregation of preferences" (SCW (1992) 9: 213-227). <!--ID="" Acknowledgements. Thanks are given to Prof. Boris A. Efimov and Gleb A. Koshevoy (Moskow, Russia), Luc Lauwers (Leuven, Belgium) and Michael Sunderland (Oxford, U.K.) for their valuable suggestions and comments.-->
Persistent link: https://www.econbiz.de/10005369256
Persistent link: https://www.econbiz.de/10005388201
Persistent link: https://www.econbiz.de/10006877553