Showing 1 - 10 of 389
In this paper we propose the GHADA risk management model that is based on the generalized hyperbolic (GH) distribution and on a nonparametric adaptive methodology. Compared to the normal distribution, the GH distribution possesses semi-heavy tails and represents the financial risk factors more...
Persistent link: https://www.econbiz.de/10012736017
Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management. The recent availability of high-frequency data allows for refined methods in this field. In particular, more precise measures for the daily or lower frequency volatility can be...
Persistent link: https://www.econbiz.de/10012723549
Based on daily VDAX data we analyse the factors governing the movements of implied volatilities of options on the German stock index DAX. We derive common factors representing shift and slope of the term structure of ATM implied volatilities. Further we present a risk management tool for option...
Persistent link: https://www.econbiz.de/10012784309
We propose a semiparametric factor model, which approximates the implied volatility surface (IVS) in a finite dimensional function space. Unlike standard principal component approaches typically used to reduce complexity, our approach is tailored to the degenerated design of IVS data. In...
Persistent link: https://www.econbiz.de/10012716516
The implied volatility of an option as a function of strike price and time to maturity forms a volatility surface. Traders price according to the dynamics of this high dimensional surface. Recent developments that employ semiparametric models approximate the implied volatility surface (IVS) in a...
Persistent link: https://www.econbiz.de/10012747360
The Nadaraya-Watson nonparametric estimator of regression is known to be highly sensitive to the presence of outliers in data. This sensitivity can be reduced, for example, by using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical...
Persistent link: https://www.econbiz.de/10012733867
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10012729919
The Nadaraya-Watson estimator of regression is known to be highly sensitive to the presence of outliers in the sample. A possible way of robustication consists in using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical conditional...
Persistent link: https://www.econbiz.de/10010983558
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010983843
Statistical Tools for Finance and Insurance presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of...
Persistent link: https://www.econbiz.de/10009643187