Showing 1 - 10 of 56
Competing risks occur in survival analysis when a subject is at risk of more than one type of event. A classic example is when there is consideration of different causes of death. Interest may lie in the cause-specific hazard rates, which can be estimated using standard survival techniques by...
Persistent link: https://www.econbiz.de/10011132957
When the mortality among a cancer patient group returns to the same level as in the general population, that is, when the patients no longer experi- ence excess mortality, the patients still alive are considered “statistically cured”. Cure models can be used to estimate the cure proportion...
Persistent link: https://www.econbiz.de/10011002429
It is usual in time-to-event data to have more than one event of interest, for example, time to death from different causes. Competing risks models can be applied in these situations where events are considered mutually exclusive absorbing states. That is, we have some initial state—for...
Persistent link: https://www.econbiz.de/10011002435
We present the Stata package stgenreg for the parametric analysis of survival data. Any user-defined hazard or log hazard function can be specified, with the model estimated using maximum likelihood utilizing numerical quadrature. Standard parametric models (for example, the Weibull proportional...
Persistent link: https://www.econbiz.de/10010581021
There is an increasing need to establish whether health-care interventions are cost effective as well as clinically effective. It is becoming increasingly common for cost studies to be incorporated into clinical trials, either on all patients or more usually on a subset of patients. Establishing...
Persistent link: https://www.econbiz.de/10005689777
This article focuses on the modelling and prediction of costs due to disease accrued over time, to inform the planning of future services and budgets. It is well documented that the modelling of cost data is often problematic due to the distribution of such data; for example, strongly right...
Persistent link: https://www.econbiz.de/10005689901
The paper demonstrates how cost-effectiveness decision analysis may be implemented from a Bayesian perspective, using Markov chain Monte Carlo simulation methods for both the synthesis of relevant evidence input into the model and the evaluation of the model itself. The desirable aspects of a...
Persistent link: https://www.econbiz.de/10005316049
The joint modeling of longitudinal and time-to-event data has exploded in the methodological literature in the past decade; however, the availability of software to implement the methods lags behind. The most common form of joint model assumes that the association between the survival and longitudinal...
Persistent link: https://www.econbiz.de/10009320958
Age–period–cohort models provide a useful method for modeling incidence and mortality rates. It is well known that age–period–cohort models suffer from an identifiability problem due to the exact relationship between the variables (cohort = period − age). In 2007, Carstensen published...
Persistent link: https://www.econbiz.de/10008784388
Cure models can be used to simultaneously estimate the proportion of cancer patients who are eventually cured of their disease and the survival of those who remain "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be...
Persistent link: https://www.econbiz.de/10008642122