Showing 1 - 10 of 582
We introduce a nonlinear model of stochastic volatility within the class of ?product type? models. It allows different degrees of dependence for the ?raw? series and for the ?squared? series, for instance implying weak dependence in the former and long memory in the latter. We discuss its main...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10005310353
For testing lack of correlation against spatial autoregressive alternatives, Lagrange multiplier tests enjoy their usual computational advantages, but the (x squared) first-order asymptotic approximation to critical values can be poor in small samples. We develop refined tests for lack of...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10010729222
We develop non-nested tests in a general spatial, spatio-temporal or panel data context. The spatial aspect can be interpreted quite generally, in either a geographical sense, or employing notions of economic distance, or even when parametric modelling arises in part from a common factor or...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10011003913
An asymptotic theory is developed for nonparametric and semiparametric series estimation under general cross-sectional dependence and heterogeneity. A uniform rate of consistency, asymptotic normality, and sufficient conditions for convergence, are established, and a data-driven studentization...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10011003914
A dynamic panel data model is considered that contains possibly stochastic individual components and a common fractional stochastic time trend. We propose four different ways of coping with the individual effects so as to estimate the fractional parameter. Like models with autoregressive...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10011003915
Nonparametric regression is developed for data with both a temporal and a cross-sectional dimension. The model includes additive, unknown, individual-specifi…c components and allows also for cross-sectional and temporal dependence and conditional heteroscedasticity. A simple nonparametric...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10011003916
There exist several estimators of the memory parameter in long-memory time series models with mean µ and the spectrum specified only locally near zero frequency. In this paper we give a lower bound for the rate of convergence of any estimator of the memory parameter as a function of the degree...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10005797502
There is frequently interest in testing that a scalar or vector time series is I(0), possibly after first- differencing or other detrending, while the I(0) assumption is also taken for granted in autocorrelation-consistent variance estimation. We propose a test for I(0) against fractional...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10005310358
In a number of econometric models, rules of large-sample inference require a consistent estimate of f(0), where f (?) is the spectral density matrix of yt = ut?xt, for covariance stationary vectors ut, xt. Typically yt is allowed to have nonparametric autocorrelation, and smoothing is used in...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10005310359
A central limit theorem is given for certain weighted sums of a covariance stationary process, assuming it is linear in martingale differences, but without any restriction on its spectrum. We apply the result to kernel nonparametric fixed-design regression, giving a single central limit theorem...
Persistent link: https://ebvufind01.dmz1.zbw.eu/10005310374