Showing 1 - 10 of 35
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a hybrid...
Persistent link: https://www.econbiz.de/10005149095
Persistent link: https://www.econbiz.de/10007730234
This paper assesses the robustness of the relative performance of spot- and options-based volatility forecasts to the treatment of microstructure noise. Robustness of the results to the method of constructing option-implied forecasts is also investigated. Using a test for superior predictive...
Persistent link: https://www.econbiz.de/10005823630
Persistent link: https://www.econbiz.de/10008210114
Dynamic jumps in the price and volatility of an asset are modelled using a joint Hawkes process in conjunction with a bivariate jump diffusion. A state space representation is used to link observed returns, plus nonparametric measures of integrated volatility and price jumps, to the specified...
Persistent link: https://www.econbiz.de/10011141014
Dynamic jumps in the price and volatility of an asset are modelled using a joint Hawkes process in conjunction with a bivariate jump diffusion. A state space representation is used to link observed returns, plus nonparametric measures of integrated volatility and price jumps, to the specified...
Persistent link: https://www.econbiz.de/10011105360
This paper investigates the dynamic behaviour of jumps in financial prices and volatility. The proposed model is based on a standard jump diffusion process for price and volatility augmented by a bivariate Hawkes process for the two jump components. The latter process speci.es a joint dynamic...
Persistent link: https://www.econbiz.de/10010860403
A Bayesian approach to option pricing is presented in which posterior inference about the underlying returns process is conducted implicitly via observed option prices. A range of models allowing for conditional leptokurtosis, skewness and time-varying volatility in returns are considered, with...
Persistent link: https://www.econbiz.de/10005161534
The object of this paper is to produce distributional forecasts of asset price volatility and its associated risk premia using a non-linear state space approach. Option and spot market information on the latent variance process is captured by using dual ‘model-free’ variance measures to...
Persistent link: https://www.econbiz.de/10010588328
The object of this paper is to produce non-parametric maximum likelihood estimates of forecast distributions in a general non-Gaussian, non-linear state space setting. The transition densities that define the evolution of the dynamic state process are represented in parametric form, but the...
Persistent link: https://www.econbiz.de/10010679031