Showing 1 - 10 of 904
In 1982, Slater defined path subgraph analogues to the center, median, and (branch or branchweight) centroid of a tree. We define three families of central substructures of trees, including three types of central subtrees of degree at most D that yield the center, median, and centroid for D = 0...
Persistent link: https://www.econbiz.de/10010731589
In 1982, Slater defined path subgraph analogues to the center, median, and (branch or branchweight) centroid of a tree. We define three families of central substructures of trees, including three types of central subtrees of degree at most D that yield the center, median, and centroid for D = 0...
Persistent link: https://www.econbiz.de/10004972227
We give a new, short proof that four certain axiomatic properties uniquely define the center of a tree.
Persistent link: https://www.econbiz.de/10005000446
A fundamental notion in metric graph theory is that of the interval function I : V × V → 2V – {∅} of a (finite) connected graph G = (V,E), where I(u,v) = { w | d(u,w) + d(w,v) = d(u,v) } is the interval between u and v. An obvious question is whether I can be characterized in a nice way...
Persistent link: https://www.econbiz.de/10011204324
A median of a sequence pi = x1, x2, … , xk of elements of a finite metric space (X, d ) is an element x for which ∑ k, i=1 d(x, xi) is minimum. The function M with domain the set of all finite sequences on X and defined by M(pi) = {x: x is a median of pi} is called the median function on X,...
Persistent link: https://www.econbiz.de/10011204326
__Abstract__ A median (antimedian) of a profile of vertices on a graph $G$ is a vertex that minimizes (maximizes) the remoteness value, that is, the sum of the distances to the elements in the profile. The median (or antimedian) function has as output the set of medians (antimedians) of a...
Persistent link: https://www.econbiz.de/10011185629
Let $G = (V,E)$ be a graph. A partition $\pi = \{V_1, V_2, \ldots, V_k \}$ of the vertices $V$ of $G$ into $k$ {\it color classes} $V_i$, with $1 \leq i \leq k$, is called a {\it quorum coloring} if for every vertex $v \in V$, at least half of the vertices in the closed neighborhood $N[v]$ of...
Persistent link: https://www.econbiz.de/10010731625
The Majority Strategy for finding medians of a set of clients on a graph can be relaxed in the following way: if we are at v, then we move to a neighbor w if there are at least as many clients closer to w than to v (thus ignoring the clients at equal distance from v and w). The graphs on which...
Persistent link: https://www.econbiz.de/10010731685
Persistent link: https://www.econbiz.de/10010731730
The notion of transit function is introduced to present a unifying approach for results and ideas on intervals, convexities and betweenness in graphs and posets. Prime examples of such transit functions are the interval function I and the induced path function J of a connected graph. Another...
Persistent link: https://www.econbiz.de/10010731801