Showing 1 - 10 of 29
Most of the Bayesian nonparametric models for non–exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes...
Persistent link: https://www.econbiz.de/10010667872
Mixture models for hazard rate functions are widely used tools for addressing the statistical analysis of survival data subject to a censoring mechanism. The present article introduced a new class of vectors of random hazard rate functions that are expressed as kernel mixtures of dependent...
Persistent link: https://www.econbiz.de/10010824067
Mixture models for hazard rate functions are widely used tools for addressing the statistical analysis of survival data subject to a censoring mechanism. The present paper introduces a new class of vectors of random hazard rate functions that are expressed as kernel mixtures of dependent...
Persistent link: https://www.econbiz.de/10011145336
Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Indeed, many popular nonparametric priors, such as the Dirichlet and the Pitman–Yor process priors, select...
Persistent link: https://www.econbiz.de/10010842840
Persistent link: https://www.econbiz.de/10011036032
Persistent link: https://www.econbiz.de/10010998671
Persistent link: https://www.econbiz.de/10006605487
Persistent link: https://www.econbiz.de/10006605488
Persistent link: https://www.econbiz.de/10005616060
A Bayesian non-parametric methodology has been recently proposed to deal with the issue of prediction within species sampling problems. Such problems concern the evaluation, conditional on a sample of size "n", of the species variety featured by an additional sample of size "m". Genomic...
Persistent link: https://www.econbiz.de/10008479736