Showing 1 - 10 of 2,763
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy-tailed distributions.We show that the recently proposed methods by Xia et al.(2002) can be made robust in such a way that preserves all advantages of the original...
Persistent link: https://www.econbiz.de/10011090490
Persistent link: https://www.econbiz.de/10011090879
We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear,...
Persistent link: https://www.econbiz.de/10011091631
Persistent link: https://www.econbiz.de/10011092412
The Nadaraya-Watson nonparametric estimator of regression is known to be highly sensitive to the presence of outliers in data.This sensitivity can be reduced, for example, by using local L-estimates of regression.Whereas the local L-estimation is traditionally done using an empirical conditional...
Persistent link: https://www.econbiz.de/10011092440
Persistent link: https://www.econbiz.de/10010694389
Persistent link: https://www.econbiz.de/10010704138
Persistent link: https://www.econbiz.de/10005478933
Persistent link: https://www.econbiz.de/10010926107
Persistent link: https://www.econbiz.de/10010926285