Showing 1 - 10 of 13
Positive and negative predictive values are important measures of accuracy whenone compares the accuracy of diagnostic tests. When more than one diagnostic tests areavailable, one may has to choose one of the possible diagnostic tests due to cost, time, orethical reason. We consider a pair study...
Persistent link: https://www.econbiz.de/10009431153
In the first part of the dissertation, we derive two methods for responders analysis in longitudinal data with random missing data. Often a binary variable is generated by dichotomizing an underlying continuous variable measured at a specific point in time according to a prespecified threshold...
Persistent link: https://www.econbiz.de/10009431182
In this thesis, we address issues of model estimation for longitudinal categorical data and of model selection for these data with missing covariates. Longitudinal survey data capture the responses of each subject repeatedly through time, allowing for the separation of variation in the measured...
Persistent link: https://www.econbiz.de/10009437884
When sampling from a finite population to estimate the means or totals of K population characteristics of interest, survey designs typically impose the constraint that information on all K characteristics (or data items) is collected from all units in the sample. Relaxing this constraint means...
Persistent link: https://www.econbiz.de/10009457318
An important challenge in statistical modeling involves determining an appropriate structural form for a model to be used in making inferences and predictions. Missing data is a very common occurrence in most research settings and can easily complicate the model selection problem. Many useful...
Persistent link: https://www.econbiz.de/10009466074
This dissertation is a collection of three stand-alone research papers. Thereby, the class of local polynomial matching estimators is the central object of investigation. The first essay concentrates on applying local polynomial matching methods in order to account for missing data when...
Persistent link: https://www.econbiz.de/10009471602
In much of applied statistics variables of interest are measured with error. In particular, regression with covariates that are subject to measurement error requires adjustment to avoid biased estimates and invalid inference. We consider two aspects of this problem. Detection Limits (DL) arise...
Persistent link: https://www.econbiz.de/10009476534
We consider estimation in generalized linear mixed models (GLMM) for longitudinal data with informative dropouts. At the time a unit drops out, time-varying covariates are often unobserved in addition to the missing outcome. However, existing informative dropout models typically require...
Persistent link: https://www.econbiz.de/10009476551
When data are missing at random, the missing-data mechanism can be ignored but this assumption is not always intuitive for general patterns of missing data. In part I, we consider maximum likelihood (ML) estimation for a non-ignorable mechanism which is called almost missing at random (AMAR). We...
Persistent link: https://www.econbiz.de/10009476653
Multiple outcomes are often used to properly characterize an effect of interest. This paper proposes a latent variable model for the situation where repeated measures over time are obtained on each outcome. These outcomes are assumed to measure an underlying quantity of main interest from...
Persistent link: https://www.econbiz.de/10009476960