Showing 1 - 10 of 33
Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as time-varying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus,...
Persistent link: https://www.econbiz.de/10015220073
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10015231929
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply...
Persistent link: https://www.econbiz.de/10009459664
This paper develops methods for estimating and forecasting in Bayesian panel vector autoregressions of large dimensions with time-varying parameters and stochastic volatility. We exploit a hierarchical prior that takes into account possible pooling restrictions involving both VAR coefficients...
Persistent link: https://www.econbiz.de/10015259147
This paper proposes a mean field variational Bayes algorithm for efficient posterior and predictive inference in time-varying parameter models. Our approach involves: i) computationally trivial Kalman filter updates of regression coefficients, ii) a dynamic variable selection prior that removes...
Persistent link: https://www.econbiz.de/10015260981
We use factor augmented vector autoregressive models with time-varying coefficients to construct a financial conditions index. The time-variation in the parameters allows for the weights attached to each financial variable in the index to evolve over time. Furthermore, we develop methods for...
Persistent link: https://www.econbiz.de/10015236406
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities...
Persistent link: https://www.econbiz.de/10015243893
This paper proposes a variational Bayes algorithm for computationally efficient posterior and predictive inference in time-varying parameter (TVP) models. Within this context we specify a new dynamic variable/model selection strategy for TVP dynamic regression models in the presence of a large...
Persistent link: https://www.econbiz.de/10015212021
This paper addresses the issue of improving the forecasting performance of vector autoregressions (VARs) when the set of available predictors is inconveniently large to handle with methods and diagnostics used in traditional small scale models. First, available information from a large dataset...
Persistent link: https://www.econbiz.de/10015220712
This paper develops methods for automatic selection of variables in forecasting Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic (linear and nonlinear) VARs. The performance...
Persistent link: https://www.econbiz.de/10015220713