Showing 1 - 10 of 36
Suppose two players wish to divide a finite set of indivisible items, over which each distributes a specified number of points. Assuming the utility of a player’s bundle is the sum of the points it assigns to the items it contains, we analyze what divisions are fair. We show that if there is...
Persistent link: https://www.econbiz.de/10015252488
Assume that two players have strict rankings over an even number of indivisible items. We propose algorithms to find allocations of these items that are maximin—maximize the minimum rank of the items that the players receive—and are envy-free and Pareto-optimal if such allocations exist. We...
Persistent link: https://www.econbiz.de/10015246851
We propose a procedure for dividing indivisible items between two players in which each player ranks the items from best to worst and has no information about the other player’s ranking. It ensures that each player receives a subset of items that it values more than the other player’s...
Persistent link: https://www.econbiz.de/10015215274
We analyze a class of proportional cake-cutting algorithms that use a minimal number of cuts (n-1 if there are n players) to divide a cake that the players value along one dimension. While these algorithms may not produce an envy-free or efficient allocation--as these terms are used in the...
Persistent link: https://www.econbiz.de/10015221562
A cake is a metaphor for a heterogeneous, divisible good, such as land. A perfect division of cake is efficient (also called Pareto-optimal), envy-free, and equitable. We give an example of a cake in which it is impossible to divide it among three players such that these three properties are...
Persistent link: https://www.econbiz.de/10015229020
Many procedures have been suggested for the venerable problem of dividing a set of indivisible items between two players. We propose a new algorithm (AL), related to one proposed by Brams and Taylor (BT), which requires only that the players strictly rank items from best to worst. Unlike BT, in...
Persistent link: https://www.econbiz.de/10015237315
Assume two players, A and B, must divide a set of indivisible items that each strictly ranks from best to worst. If the number of items is even, assume that the players desire that the allocations be balanced (each player gets half the items), item-wise envy-free (EF), and Pareto-optimal (PO)....
Persistent link: https://www.econbiz.de/10015238163
An allocation of indivisible items among n ≥ 2 players is proportional if and only if each player receives a proportional subset—one that it thinks is worth at least 1/n of the total value of all the items. We show that a proportional allocation exists if and only if there is an allocation...
Persistent link: https://www.econbiz.de/10015242896
Winning the coin toss at the end of a tied soccer game gives a team the right to choose whether to kick either first or second on all five rounds of penalty kicks, when each team is allowed one kick per round. There is considerable evidence that the right to make this choice, which is usually to...
Persistent link: https://www.econbiz.de/10015269493
In the much-studied Centipede Game, which resembles Iterated Prisoners’ Dilemma, two players successively choose between (1) cooperating, by continuing play, or (2) defecting and terminating play. The subgame-perfect Nash equilibrium implies that play terminates on the first move, even though...
Persistent link: https://www.econbiz.de/10015238187