Showing 1 - 10 of 53
Persistent link: https://www.econbiz.de/10001813114
Persistent link: https://www.econbiz.de/10001813634
We develop and test a robust procedure for extracting an underlying signal in form of a time-varying trend from very noisy time series. The application we have in mind is online monitoring data measured in intensive care, where we find periods of relative constancy, slow monotonic trends, level...
Persistent link: https://www.econbiz.de/10010509826
We examine the hypothesis of an increase of humus disintegration by analyzing chemical substances measured in the seepage water of a German forest. Problems arise because of a large percentage of missing observations. We use a regression model with spatial and temporal effects constructed in an...
Persistent link: https://www.econbiz.de/10010477828
Tests for shift detection in locally-stationary autoregressive time series are constructed which resist contamination by a substantial amount of outliers. Tests based on a comparison of local medians standardized by a highly robust estimate of the variability show reliable performance in a broad...
Persistent link: https://www.econbiz.de/10003835696
Abrupt shifts in the level of a time series represent important information and should be preserved in statistical signal extraction. We investigate rules for detecting level shifts that are resistant to outliers and which work with only a short time delay. The properties of robustified versions...
Persistent link: https://www.econbiz.de/10003581856
Persistent link: https://www.econbiz.de/10001788629
Persistent link: https://www.econbiz.de/10001982567
We discuss the robust estimation of a linear trend if the noise follows an autoregressive process of first order. We find the ordinary repeated median to perform well except for negative correlations. In this case it can be improved by a Prais-Winsten transformation using a robust...
Persistent link: https://www.econbiz.de/10002569941
Persistent link: https://www.econbiz.de/10002363269