Showing 1 - 10 of 6,519
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their ratio converging to a finite, nonzero limit. As...
Persistent link: https://www.econbiz.de/10010228456
This paper revisits the methodology of Stein (1975, 1986) for estimating a covariance matrix in the setting where the number of variables can be of the same magnitude as the sample size. Stein proposed to keep the eigenvectors of the sample covariance matrix but to shrink the eigenvalues. By...
Persistent link: https://www.econbiz.de/10009748767
This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as...
Persistent link: https://www.econbiz.de/10011414533
This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as...
Persistent link: https://www.econbiz.de/10011598572
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal within a class of nonlinear shrinkage estimators. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their...
Persistent link: https://www.econbiz.de/10011630780
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012584105
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012030045
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012165715
Numerous heavy-tailed distributions are used for modeling financial data and in problems related to the modeling of economics processes. These distributions have higher peaks and heavier tails than normal distributions. Moreover, in some situations, we cannot observe complete information about...
Persistent link: https://www.econbiz.de/10011606719
The paper develops a novel realized stochastic volatility model of asset returns and realized volatility that incorporates general asymmetry and long memory (hereafter the RSV-GALM model). The contribution of the paper ties in with Robert Basmann's seminal work in terms of the estimation of...
Persistent link: https://www.econbiz.de/10011636455