Showing 1 - 10 of 39
We consider a family of GARCH(1,1) processes introduced in He and Teräsvirta (1999a). This family contains various popular GARCH models as special cases. A necessary and sufficient condition for the existence of a strictly stationary solution is given. -- GARCH ; strict stationarity ; Lyapunov...
Persistent link: https://www.econbiz.de/10003073741
Persistent link: https://www.econbiz.de/10003379128
Persistent link: https://www.econbiz.de/10003387158
This paper contains two novelties. First, a unified framework for testing and evaluating the adequacy of an estimated autoregressive conditional duration (ACD) model is presented. Second, two new classes of ACD models, the smooth transition ACD model and the time-varying ACD model, are...
Persistent link: https://www.econbiz.de/10001959574
This paper studies a class of Markov models which consist of two components. Typically, one of the components is observable and the other is unobservable or 'hidden'. Conditions under which (a form of) geometric ergodicity of the unobservable component is inherited by the joint process formed of...
Persistent link: https://www.econbiz.de/10002465203
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a functional coefficient autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first order generalized...
Persistent link: https://www.econbiz.de/10014217546
This document provides an overview of the StMAR Toolbox, a MATLAB toolbox specifically designed for simulation, estimation, diagnostic, and forecasting of the Student's t mixture autoregressive (StMAR) model proposed by Meitz, Preve & Saikkonen (2018). The StMAR model is a new type of mixture...
Persistent link: https://www.econbiz.de/10012912421
A new mixture autoregressive model based on Student's t-distribution is proposed. A key feature of our model is that the conditional t-distributions of the component models are based on autoregressions that have multivariate t-distributions as their (low-dimensional) stationary distributions....
Persistent link: https://www.econbiz.de/10012919489
Tests for identification through heteroskedasticity in structural vector autoregressive analysis are developed for models with two volatility states where the time point of volatility change is known. The tests are Wald type tests for which only the unrestricted model including the covariance...
Persistent link: https://www.econbiz.de/10012909293
Persistent link: https://www.econbiz.de/10009489714