Showing 1 - 10 of 28,095
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010399681
Persistent link: https://www.econbiz.de/10009667202
This paper estimates the drift parameters in the fractional Vasicek model from a continuous record of observations via maximum likelihood (ML). The asymptotic theory for the ML estimates (MLE) is established in the stationary case, the explosive case, and the boundary case for the entire range...
Persistent link: https://www.econbiz.de/10012265682
We propose a simulated maximum likelihood estimator (SMLE) for general stochastic dynamic models based on nonparametric kernel methods. The method requires that, while the actual likelihood function cannot be written down, we can still simulate observations from the model. From the simulated...
Persistent link: https://www.econbiz.de/10012734210
In this paper we analyse the problem of modelling individual transitions in the presence of an incomplete sampling scheme. This problem is particularly cumbersome when a continuous time-scale is used for the modelling and when the model incorporates unobserved heterogeneity. This problem arises,...
Persistent link: https://www.econbiz.de/10014197183
Persistent link: https://www.econbiz.de/10010191411
The main goal of this paper is to better understand the behavior of credit spreads in the past and the potential risk of unexpected future credit spread changes. One important consideration to note regarding credit spreads is the fact that bond spreads contain a liquidity premium, which...
Persistent link: https://www.econbiz.de/10013105185
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10013005987
The aim of these notes is to revisit sequential Monte Carlo (SMC) sampling. SMC sampling is a powerful simulation tool for solving non-linear and/or non-Gaussian state space models. We illustrate this with several examples
Persistent link: https://www.econbiz.de/10012993836
This paper explains how the Gibbs sampler can be used to perform Bayesian inference on GARCH models. Although the Gibbs sampler is usually based on the analyti-cal knowledge of the full conditional posterior densities, such knowledge is not available in regression models with GARCH errors. We...
Persistent link: https://www.econbiz.de/10014197191