Showing 1 - 10 of 7,640
Identification of subgroups of patients for which treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Several tree-based algorithms have been developed for the detection of such treatment-subgroup interactions. In many...
Persistent link: https://www.econbiz.de/10011344260
In multinomial processing tree (MPT) models, individual differences between the participants in a study lead to heterogeneity of the model parameters. While subject covariates may explain these differences, it is often unknown in advance how the parameters depend on the available covariates,...
Persistent link: https://www.econbiz.de/10011530631
Persistent link: https://www.econbiz.de/10009544965
Commonly used classification and regression tree methods like the CART algorithm are recursive partitioning methods that build the model in a forward stepwise search. Although this approach is known to be an efficient heuristic, the results of recursive tree methods are only locally optimal, as...
Persistent link: https://www.econbiz.de/10009737522
We introduce machine learning in the context of central banking and policy analyses. Our aim is to give an overview broad enough to allow the reader to place machine learning within the wider range of statistical modelling and computational analyses, and provide an idea of its scope and...
Persistent link: https://www.econbiz.de/10012948433
The R package partykit provides a flexible toolkit for learning, representing, summarizing, and visualizing a wide range of tree-structured regression and classification models. The functionality encompasses: (a) basic infrastructure for representing trees (inferred by any algorithm) so that...
Persistent link: https://www.econbiz.de/10010337729
Recursive partitioning techniques are established and frequently applied for exploring unknown structures in complex and possibly high-dimensional data sets. The methods can be used to detect interactions and nonlinear structures in a data-driven way by recursively splitting the predictor space...
Persistent link: https://www.econbiz.de/10011472153
The classical canonical correlation analysis is extremely greedy to maximize the squared correlation between two sets of variables. As a result, if one of the variables in the dataset-1 is very highly correlated with another variable in the dataset-2, the canonical correlation will be very high...
Persistent link: https://www.econbiz.de/10014046874
Predictive power has always been the main research focus of learning algorithms with the goal of minimizing the test error for supervised classification and regression problems. While the general approach for these algorithms is to consider all possible attributes in a dataset to best predict...
Persistent link: https://www.econbiz.de/10012270791
For a while in Turkey, researchers dealing with spatial economics are unable to make detailed comparative and descriptive analysis on sub-national base due to lack of data. In particular, GDP, which is a basic indicator of economic activities, has not been published in Turkey at sub-national...
Persistent link: https://www.econbiz.de/10012977439