Showing 1 - 10 of 812,036
The motivation of this paper is to introduce a short term adaptive model (Partial Swarm Optimizer combined with linear and nonlinear models when applied to the task of forecasting and trading the daily closing returns of the FTSE100 exchange traded funds (ETFs). This is done by benchmarking its...
Persistent link: https://www.econbiz.de/10011573208
In this paper we focus on analyzing the predictive accuracy of three different types of forecasting techniques, Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN), and Singular Spectral Analysis (SSA), used for predicting chaotic time series data. These techniques...
Persistent link: https://www.econbiz.de/10012947889
The standard way to summarize the yield curve is to use the first three principal components of the yield curve, resulting in level, slope and curvature factors. Yields, however, are non-stationary. We analyze the first three principal components of yield changes, which correspond to changes in...
Persistent link: https://www.econbiz.de/10013233328
We provide a measure of sparsity for expected returns within the context of classical factor models. Our measure is inversely related to the percentage of active predictors. Empirically, sparsity varies over time and displays an apparent countercyclical behavior. Proxies for financial conditions...
Persistent link: https://www.econbiz.de/10012848158
With approximately 900 million observations we conduct, to our knowledge, the largest study ever of intraday stock return predictability using machine learning techniques finding consistent out-of-sample predictability across market, sector, and individual stock returns at various time horizons....
Persistent link: https://www.econbiz.de/10014349804
We show that machine learning methods, in particular extreme trees and neural networks (NNs), provide strong statistical evidence in favor of bond return predictability. NN forecasts based on macroeconomic and yield information translate into economic gains that are larger than those obtained...
Persistent link: https://www.econbiz.de/10012851583
Forecasting the stock returns in the emerging markets is challenging due to their peculiar characteristics. These markets exhibit linear as well as nonlinear features and Conventional forecasting methods partially succeed in dealing with the nonlinear nature of stock returns. Contrarily,...
Persistent link: https://www.econbiz.de/10012175006
develop several original studies. Based on the work begun by Friedman (1977), he developed a very accurate classification … present the work of Breiman known as the Recursive Partitioning Algorithm. The RPA will be introduced as a nonparametric …
Persistent link: https://www.econbiz.de/10013100691
Purpose - The economic and administrative conditions of countries normatively have an effect on the economy and level of market development. Moreover, it is of great importance for a healthy economy whether the public institutions and organizations are transparent and functioning in accordance...
Persistent link: https://www.econbiz.de/10014318195
We consider the basic problem of refi tting a time series over a finite period of time and formulate it as a stochastic dynamic program. By changing the underlying Markov decision process we are able to obtain a model that at optimality considers historical data as well as forecasts of future...
Persistent link: https://www.econbiz.de/10012894079