Showing 1 - 10 of 13,179
Many seasonal macroeconomic time series are subject to changes in their means and variances over a long time horizon. In this paper we propose a general treatment for the modelling of time-varying features in economic time series. We show that time series models with mean and variance functions...
Persistent link: https://www.econbiz.de/10010326058
We develop a method for directly modeling cointegrated multivariate time series that are observed in mixed frequencies. We regard lower-frequency data as regularly (or irregularly) missing and treat them with higher-frequency data by adopting a state-space model. This utilizes the structure of...
Persistent link: https://www.econbiz.de/10010264085
By means of wavelet transform a time series can be decomposed into a time dependent sum of frequency components. As a result we are able to capture seasonalities with time-varying period and intensity, which nourishes the belief that incorporating the wavelet transform in existing forecasting...
Persistent link: https://www.econbiz.de/10010300727
We study whether and when parameter-driven time-varying parameter models lead to forecasting gains over observation-driven models. We consider dynamic count, intensity, duration, volatility and copula models, including new specifications that have not been studied earlier in the literature. In...
Persistent link: https://www.econbiz.de/10010326198
In this note the author discusses the problem of updating forecasts in a time-discrete forecasting model when information arrives between the current period and the next period. To use the information that arrives between two periods, he assumes that the process between two periods can be...
Persistent link: https://www.econbiz.de/10010298603
This paper examines stationary and nonstationary time series by formally testing for the presence of unit roots and seasonal unit roots prior to estimation, model selection and forecasting. Various Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) models are estimated over the period...
Persistent link: https://www.econbiz.de/10010332392
We explore a new approach to the forecasting of macroeconomic variables based on a dynamic factor state space analysis. Key economic variables are modeled jointly with principal components from a large time series panel of macroeconomic indicators using a multivariate unobserved components time...
Persistent link: https://www.econbiz.de/10010326452
This paper presents and exemplifies results developed for cointegration analysis with state space models by Bauer and Wagner in a series of papers. Unit root processes, cointegration and polynomial cointegration are defined. Based upon these definitions the major part of the paper discusses how...
Persistent link: https://www.econbiz.de/10010294007
We introduce a non-Gaussian dynamic mixture model for macroeconomic forecasting. The Locally Adaptive Signal Extraction and Regression (LASER) model is designed to capture relatively persistent AR processes (signal) contaminated by high frequency noise. The distribution of the innovations in...
Persistent link: https://www.econbiz.de/10010320774
Attack and defense strengths of football teams vary over time due to changes in the teams of players or their managers. We develop a statistical model for the analysis and forecasting of football match results which are assumed to come from a bivariate Poisson distribution with intensity...
Persistent link: https://www.econbiz.de/10010326498