Showing 1 - 10 of 18
Generalized additive models have become a widely used instrument for flexible regression analysis. In many practical situations, however, it is desirable to restrict the flexibility of nonparametric estimation in order to accommodate a presumed monotonic relationship between a covariate and the...
Persistent link: https://www.econbiz.de/10010266201
Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM?s and extensions to generalized structured additive regression based on one or two dimensional P-splines...
Persistent link: https://www.econbiz.de/10010263507
We propose geoadditive survival models for analyzing effects jointly with possibly nonlinear effects of other covariates. Within a unified Bayesian frame work, our approach extends the classical Cox model to a more general multiplicative hazard rate model, augmenting the common linear predictor...
Persistent link: https://www.econbiz.de/10010266134
There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the...
Persistent link: https://www.econbiz.de/10010266146
This technical report supplements the paper Geoadditive Survival Models (Hennerfeind, Brezger and Fahrmeir, 2005, Revised for JASA). In particular, we describe the simulation study of this paper in greater detail, present additional results for the application, and provide a complete proof of...
Persistent link: https://www.econbiz.de/10010266161
P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and...
Persistent link: https://www.econbiz.de/10010266209
Survival data oftern contain small area geographical or spatial information, such as the residence of individuals. In many cases the impact of such spatial effects on hazard rates is of considerable substantive interest. Therefore, extensions of known survival or hazard rate models to spatial...
Persistent link: https://www.econbiz.de/10010266231
Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio-temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or...
Persistent link: https://www.econbiz.de/10010274234
P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and...
Persistent link: https://www.econbiz.de/10010293432
The most commonly used variant of conjoint analysis is choice-based conjoint (CBC). Here, hierarchical Bayesian (HB) multinomial logit (MNL) models are widely used for preference estimation at the individual respondent level. A new and very flexible approach to address multimodal and skewed...
Persistent link: https://www.econbiz.de/10015192761