Showing 1 - 10 of 172
Suppose that a target function is monotonic, namely, weakly increasing, and an original estimate of the target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates. We show that these estimates can always be improved with...
Persistent link: https://www.econbiz.de/10010318513
The most common approach to estimating conditional quantile curves is to fit a curve, typically linear, pointwise for each quantile. Linear functional forms, coupled with pointwise fitting, are used for a number of reasons including parsimony of the resulting approximations and good...
Persistent link: https://www.econbiz.de/10010318516
This paper applies a regularization procedure called increasing rearrangement to monotonize Edgeworth and Cornish-Fisher expansions and any other related approximations of distribution and quantile functions of sample statistics. Besides satisfying the logical monotonicity, required of...
Persistent link: https://www.econbiz.de/10010318582
Suppose that a target function f0 : Rd - R is monotonic, namely weakly increasing, and an original estimate f of this target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates f. We show that these estimates can always...
Persistent link: https://www.econbiz.de/10010288431
We develop a distribution regression model under endogenous sample selection. This model is a semi-parametric generalization of the Heckman selection model. It accommodates much richer effects of the covariates on outcome distribution and patterns of heterogeneity in the selection process, and...
Persistent link: https://www.econbiz.de/10014480516
The Arellano-Bond estimator is a fundamental method for dynamic panel data models, widely used in practice. However, the estimator is severely biased when the data's time series dimension T is long due to the large degree of overidentification. We show that weak dependence along the panel's time...
Persistent link: https://www.econbiz.de/10014581834
We consider estimation of policy relevant treatment effects in a data-rich environ ment where there may be many more control variables available than there are observations. In addition to allowing many control variables, the setting we consider allows heterogeneous treatment effects, endogenous...
Persistent link: https://www.econbiz.de/10010368188
In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data-rich environments. We can handle very many control variables, endogenous receipt of treatment,...
Persistent link: https://www.econbiz.de/10011445796
This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection...
Persistent link: https://www.econbiz.de/10011941458
The R package quantreg.nonpar implements nonparametric quantile regression methods to estimate and make inference on partially linear quantile models. quantreg.nonpar obtains point estimates of the conditional quantile function and its derivatives based on series approximations to the...
Persistent link: https://www.econbiz.de/10011941473