Showing 1 - 10 of 762
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10010316616
In the ideal Black-Scholes world, financial time series are assumed 1) stationary (time homogeneous) and 2) having conditionally normal distribution given the past. These two assumptions have been widely-used in many methods such as the RiskMetrics, one risk management method considered as...
Persistent link: https://www.econbiz.de/10010263671
We discuss filtering procedures for robust extraction of a signal from noisy time series. Moving averages and running medians are standard methods for this, but they have shortcomings when large spikes (outliers) respectively trends occur. Modified trimmed means and linear median hybrid filters...
Persistent link: https://www.econbiz.de/10010296628
In intensive care, time series of vital parameters have to be analysed online, i.e. without any time delay, since there may be serious consequences for the patient otherwise. Such time series show trends, slope changes and sudden level shifts, and they are overlaid by strong noise and many...
Persistent link: https://www.econbiz.de/10010296637
We propose weighted repeated median filters and smoothers for robust non-parametric regression in general and for robust signal extraction from time series in particular. The proposed methods allow to remove outlying sequences and to preserve discontinuities (shifts) in the underlying regression...
Persistent link: https://www.econbiz.de/10010296694
This paper presents variance extraction procedures for univariate time series. The volatility of a times series is monitored allowing for non-linearities, jumps and outliers in the level. The volatility is measured using the height of triangles formed by consecutive observations of the time...
Persistent link: https://www.econbiz.de/10010298200
Abrupt shifts in the level of a time series represent important information and should be preserved in statistical signal extraction. We investigate rules for detecting level shifts that are resistant to outliers and which work with only a short time delay. The properties of robustified versions...
Persistent link: https://www.econbiz.de/10010298203
We discuss optimal design problems for a popular method of series estimation in regression problems. Commonly used design criteria are based on the generalized variance of the estimates of the coefficients in a truncated series expansion and do not take possible bias into account. We present a...
Persistent link: https://www.econbiz.de/10010298214
In this paper a robust data-driven procedure for decomposing seasonal time series based on a generalized Berlin Method (BV, Berliner Verfahren) as proposed by Heiler and Michels (1994) is discussed. The basic robust algorithm used here is an adaptation of the LOWESS (LOcally Weighted Scatterplot...
Persistent link: https://www.econbiz.de/10010324045
Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10010324063