Showing 1 - 6 of 6
Root cancellation in Auto Regressive Moving Average (ARMA) models leads tolocal non-identification of parameters. When we use diffuse or normal priorson the parameters of the ARMA model, posteriors in Bayesian analyzes show ana posteriori favor for this local non-identification. We show that the...
Persistent link: https://www.econbiz.de/10010324489
Parameters in AutoRegressive Moving Average (ARMA) models are locally nonidentified, due to the problem of root cancellation. Parameters can be constructed which represent this identification problem. We argue that ARMA parameters should be analyzed conditional on these identifying...
Persistent link: https://www.econbiz.de/10010324701
In this paper, we make use of state space models to investigate the presence of stochastic trends in economic time series. A model is specified where such a trend can enter either in the autoregressive representation or in a separate state equation. Tests based on the former are analogous to...
Persistent link: https://www.econbiz.de/10010324436
We construct a novel statistic to test hypothezes on subsets of the structural parameters in anInstrumental Variables (IV) regression model. We derive the chi squared limiting distribution of thestatistic and show that it has a degrees of freedom parameter that is equal to the number...
Persistent link: https://www.econbiz.de/10010324384
We show that three convenient statistical properties that are known to hold forthe linear model with normal distributed errors that: (i.) when the variance is known, the likelihood based test statistics, Wald, Likelihood Ratio andScore or Lagrange Multiplier, coincide, (ii.) when the variance is...
Persistent link: https://www.econbiz.de/10010324465
We propose in this paper a likelihood-based framework forcointegration analysis in panels of a fixed number of vector errorcorrection models. Maximum likelihood estimators of thecointegrating vectors are constructed using iterated GeneralizedMethod of Moments estimators. Using these estimators...
Persistent link: https://www.econbiz.de/10010324502