Showing 1 - 10 of 74
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10010303678
This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a...
Persistent link: https://www.econbiz.de/10010308574
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed at high frequencies, such as cumulated trading volumes. We introduce a flexible point-mass...
Persistent link: https://www.econbiz.de/10010308578
Trading under limited pre-trade transparency becomes increasingly popular on financial markets. We provide first evidence on traders' use of (completely) hidden orders which might be placed even inside of the (displayed) bid-ask spread. Employing TotalView-ITCH data on order messages at NASDAQ,...
Persistent link: https://www.econbiz.de/10010308581
An important claim of Bayesian learning and a standard assumption in price discovery models is that the strength of the price impact of unanticipated information depends on the precision of the news. In this paper, we test for this assumption by analyzing intra-day price responses of CBOT T-bond...
Persistent link: https://www.econbiz.de/10010308691
Some authors suggest that firing a coach reflects a principal-agent problem between team managers and coaches. Another explanation emphasizes the matching problem between teams and coaches. This paper provides empirical evidence for the latter: Using German soccer league data, we analyze the...
Persistent link: https://www.econbiz.de/10010311224
We analyze how markets adjust to new information when the reliability of news is uncertain and has to be estimated itself. We propose a Bayesian learning model where market participants receive fundamental information along with noisy estimates of news' precision. It is shown that the efficiency...
Persistent link: https://www.econbiz.de/10010311647
We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables' conditional mean processes using a multiplicative error model we map the resulting...
Persistent link: https://www.econbiz.de/10010318750
Multiplicative error models (MEM) became a standard tool for modeling conditional durations of intraday transactions, realized volatilities and trading volumes. The parametric estimation of the corresponding multivariate model, the so-called vector MEM (VMEM), requires a specification of the...
Persistent link: https://www.econbiz.de/10010318757
We propose a methodology for forecasting the systemic impact of financial institutions in interconnected systems. Utilizing a five-year sample including the 2008/9 financial crisis, we demonstrate how the approach can be used for timely systemic risk monitoring of large European banks and...
Persistent link: https://www.econbiz.de/10010318762