Showing 1 - 10 of 12
The random coeffcients model is an extension of the linear regression model which allows for additional heterogeneity in the population by modeling the regression coeffcients as random variables. Given data from this model, the statistical challenge is to recover information about the joint...
Persistent link: https://www.econbiz.de/10011636820
Stochastic Volatility (SV) models are widely used in financial applications. To decide whether standard parametric restrictions are justified for a given dataset, a statistical test is required. In this paper, we develop such a test based on the linear state space representation. We provide a...
Persistent link: https://www.econbiz.de/10010309921
We introduce and analyse numerical methods for the treatment of inverse problems, based on an adaptive wavelet Galerkin discretization. These methods combine the theoretical advantages of the wavelet-vaguelette decomposition (WVD) in terms of optimally adapting to the unknown smoothness of the...
Persistent link: https://www.econbiz.de/10010310518
We study the problem of estimating the coefficients of a diffusion (Xl, t 2: 0); the estimation is based on discrete data Xn . . n = 0, 1, ... ,N. The sampling frequency delta t is constant , and asymptotics arc taken at the number of observations tends to infinity. We prove that the problem of...
Persistent link: https://www.econbiz.de/10010310543
Persistent link: https://www.econbiz.de/10010316522
The purpose of this paper is to propose a procedure for testing the equality of several regression curves fi in nonparametric regression models when the noise is inhomogeneous. This extends work of Dette and Neumeyer (2001) and it is shown that the new test is asymptotically uniformly more...
Persistent link: https://www.econbiz.de/10010296611
We present a new approach to handle dependencies within the general framework of case-control designs, illustrating our approach by a particular application from the field of genetic epidemiology. The method is derived for parent-offspring trios, which will later be relaxed to more general...
Persistent link: https://www.econbiz.de/10010296719
During the past the convergence analysis for linear statistical inverse problems has mainly focused on spectral cut-off and Tikhonov type estimators. Spectral cut-off estimators achieve minimax rates for a broad range of smoothness classes and operators, but their practical usefulness is limited...
Persistent link: https://www.econbiz.de/10010298188
Uniform confidence bands for densities f via nonparametric kernel estimates were first constructed by Bickel and Rosenblatt [Ann. Statist. 1, 1071.1095]. In this paper this is extended to confidence bands in the deconvolution problem g = f for an ordinary smooth error density . Under certain...
Persistent link: https://www.econbiz.de/10010300661
The computation of robust regression estimates often relies on minimization of a convex functional on a convex set. In this paper we discuss a general technique for a large class of convex functionals to compute the minimizers iteratively which is closely related to majorization-minimization...
Persistent link: https://www.econbiz.de/10010300699