Showing 1 - 10 of 324
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10010325429
Estimation of agent-based models is currently an intense area of research. Recent contributions have to a large extent resorted to simulation-based methods mostly using some form of simulated method of moments estimation (SMM). There is, however, an entire branch of statistical methods that...
Persistent link: https://www.econbiz.de/10011750363
In this paper, I study the drop of real GDP volatility which has been observed in the United States during the postwar period. This paper thoroughly estimates how much sectoral shifts contributed to this phenomenon called the Great Moderation. In a short section, Stock and Watson (2003) find...
Persistent link: https://www.econbiz.de/10010316043
This paper presents the construction of a particle filter, which incorporates elements inspired by genetic algorithms, in order to achieve accelerated adaptation of the estimated posterior distribution to changes in model parameters. Specifically, the filter is designed for the situation where...
Persistent link: https://www.econbiz.de/10013200890
In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical...
Persistent link: https://www.econbiz.de/10010263750
In this paper, we develop and apply Bayesian inference for an extended Nelson-Siegel (1987) term structure model capturing interest rate risk. The so-called Stochastic Volatility Nelson-Siegel (SVNS) model allows for stochastic volatility in the underlying yield factors. We propose a Markov...
Persistent link: https://www.econbiz.de/10010270702
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, we use nonparametric Bayesian methods to flexibly model the skewness and...
Persistent link: https://www.econbiz.de/10010292240
In this paper we investigate whether the dynamic properties of the U.S. business cycle have changed in the last fifty years. For this purpose we develop a flexible business cycle indicator that is constructed from a moderate set of macroeconomic time series. The coincident economic indicator is...
Persistent link: https://www.econbiz.de/10010325871
Intraday high-frequency data of stock returns exhibit not only typical characteristics (e.g., volatility clustering and the leverage effect) but also a cyclical pattern of return volatility that is known as intraday seasonality. In this paper, we extend the stochastic volatility (SV) model for...
Persistent link: https://www.econbiz.de/10012611702
Prepared for the Handbook of Economic Forecasting, vol 2 This chapter reviews Bayesian methods for inference and forecasting with VAR models. Bayesian inference and, by extension, forecasting depends on numerical methods for simulating from the posterior distribution of the parameters and spe-...
Persistent link: https://www.econbiz.de/10012654382