Showing 1 - 10 of 1,578
This paper considers nonparametric identification and estimation of the regression function when a covariate is mismeasured. The measurement error need not be classical. Employing the small measurement error approximation, we establish nonparametric identification under weak and...
Persistent link: https://www.econbiz.de/10014581847
Identification based on higher moments has drawn increasing theoretical attention and been widely adopted in empirical practice in macroeconometrics in the last two decades. This article reviews two parallel strands of the literature: identification strategies based on heteroskedasticity and...
Persistent link: https://www.econbiz.de/10014480567
parameters under heteroscedasticity. To address these issues, we develop a Bayesian semiparametric model with flexible predictor …
Persistent link: https://www.econbiz.de/10010290980
Slope coefficients in rank-rank regressions are popular measures of intergenerational mobility, for instance in regressions of a child's income rank on their parent's income rank. In this paper, we first point out that commonly used variance estimators such as the homoskedastic or robust...
Persistent link: https://www.econbiz.de/10014480485
We model a regression density nonparametrically so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends existing models in two important...
Persistent link: https://www.econbiz.de/10010320765
A monotone estimate of the conditional variance function in a heteroscedastic, nonpara- metric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an esti- mate of the inverse variance...
Persistent link: https://www.econbiz.de/10010296626
A general model is proposed for flexibly estimating the density of a continuous response variable conditional on a possibly high-dimensional set of covariates. The model is a finite mixture of asymmetric student-t densities with covariate dependent mixture weights. The four parameters of the...
Persistent link: https://www.econbiz.de/10010320729
Smooth mixtures, i.e. mixture models with covariate-dependent mixing weights, are very useful flexible models for conditional densities. Previous work shows that using too simple mixture components for modeling heteroscedastic and/or heavy tailed data can give a poor fit, even with a large...
Persistent link: https://www.econbiz.de/10010320786
This paper presents the R package MitISEM, which provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target density is required. The approximation can be used as a candidate density in...
Persistent link: https://www.econbiz.de/10010326521
This paper describes a semiparametric Bayesian method for analyzing duration data. The proposed estimator specifies a complete functional form for duration spells, but allows flexibility by introducing an individual heterogeneity term, which follows a Dirichlet mixture distribution. I show how...
Persistent link: https://www.econbiz.de/10010276176