Showing 1 - 10 of 29
Most econometric analyses of patent data rely on regression methods using a parametric form of the predictor for modeling the dependence of the response given certain covariates. These methods often lack the capability of identifying non-linear relationships between dependent and independent...
Persistent link: https://www.econbiz.de/10010263509
The most widely used approaches in hedonic price modelling of real estate data and price index construction are Time Dummy and Imputation methods. Both methods, however, reveal extreme approaches regarding regression modeling of real estate data. In the time dummy approach, the data are pooled...
Persistent link: https://www.econbiz.de/10014319994
Gaussian Structured Additive Regression provides a flexible framework for additive decomposition of the expected value with nonlinear covariate effects and time trends, unit- or cluster-specific heterogeneity, spatial heterogeneity, and complex interactions between covariates of different types....
Persistent link: https://www.econbiz.de/10014494996
Modeling real estate prices in the context of hedonic models often involves fitting a Generalized Additive Model, where only the mean of a (lognormal) distribution is regressed on a set of variables without taking other parameters of the distribution into account. Thus far, the application of...
Persistent link: https://www.econbiz.de/10014494999
Structured additive regression (STAR) models provide a flexible framework for modeling possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models (GLM) and generalized additive models (GAM) as special cases but also allow a wider class of...
Persistent link: https://www.econbiz.de/10010312215
Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation...
Persistent link: https://www.econbiz.de/10010312219
Models with structured additive predictor provide a very broad and rich framework for complex regression modeling. They can deal simultaneously with nonlinear covariate effects and time trends, unit- or cluster-specific heterogeneity, spatial heterogeneity and complex interactions between...
Persistent link: https://www.econbiz.de/10010312244
Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM?s and extensions to generalized structured additive regression based on one or two dimensional P-splines...
Persistent link: https://www.econbiz.de/10010263507
There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the...
Persistent link: https://www.econbiz.de/10010266146
Kalyanam and Shively (1998) and van Heerde et al. (2001) have proposed semiparametric models to estimate the influence of price promotions on brand sales, and both obtained superior performance for their models compared to strictly parametric modeling. Following these researchers, we suggest...
Persistent link: https://www.econbiz.de/10010266187