Showing 1 - 10 of 4,690
We test the out-of-sample trading performance of model-free reinforcement learning (RL) agents and compare them with the performance of equally-weighted portfolios and traditional mean-variance (MV) optimization benchmarks. By dividing European and U.S. indices constituents into factor datasets,...
Persistent link: https://www.econbiz.de/10014284496
Using the S&P GSCI and its five component sub-indices, we show that considering each commodity separately yields nontrivial hedging gains in and out of sample. During 1999-2019, the maximum Sharpe ratio portfolio assigns positive weights to the GSCI Energy, Industrial and Precious Metals,...
Persistent link: https://www.econbiz.de/10012662703
Nowadays, modeling and forecasting the volatility of stock markets have become central to the practice of risk management; they have become one of the major topics in financial econometrics and they are principally and continuously used in the pricing of financial assets and the Value at Risk,...
Persistent link: https://www.econbiz.de/10014494424
We employ a wavelet approach and conduct a time-frequency analysis of dynamic correlations between pairs of key traded assets (gold, oil, and stocks) covering the period from 1987 to 2012. The analysis is performed on both intra-day and daily data. We show that heterogeneity in correlations...
Persistent link: https://www.econbiz.de/10010398701
We employ a wavelet approach and conduct a time-frequency analysis of dynamic correlations between pairs of key traded assets (gold, oil, and stocks) covering the period from 1987 to 2012. The analysis is performed on both intra-day and daily data. We show that heterogeneity in correlations...
Persistent link: https://www.econbiz.de/10010531821
This paper injects factor structure into the estimation of time-varying, large-dimensional covariance matrices of stock returns. Existing factor models struggle to model the covariance matrix of residuals in the presence of conditional heteroskedasticity in large universes. Conversely,...
Persistent link: https://www.econbiz.de/10011969201
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012026512
Two basic solutions have been proposed to fix the well-documented incompatibility of the sample covariance matrix with Markowitz mean-variance portfolio optimization: first, restrict leverage so much that no short sales are allowed; or, second, linearly shrink the sample covariance matrix towards...
Persistent link: https://www.econbiz.de/10012040364
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10011663163
Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is...
Persistent link: https://www.econbiz.de/10011663190