Showing 1 - 10 of 61
Applying nonparametric variable selection criteria in nonlinear regression models generally requires a substantial computational effort if the data set is large. In this paper we present a selection technique that is computationally much less demanding and performs well in comparison with...
Persistent link: https://www.econbiz.de/10010310027
This paper discusses the existence of spurious long memory in common nonlinear time series models, namely Markov switching and threshold models. We describe the asymptotic behavior of the process in terms of autocovariance and autocorrelation function and support the theoretical evidences by...
Persistent link: https://www.econbiz.de/10010264953
Using data from Germany, Japan, UK, and the U.S., we explore possible threshold cointegration in nominal short- and long-run interest rates with corresponding inflation rates. Traditional cointegration implies perfect mean reversion in real rates and hence confirms the Fisher hypothesis....
Persistent link: https://www.econbiz.de/10010292774
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10010325904
In this paper the performance of different information criteria for simultaneous model class and lag order selection is evaluated using simulation studies. We focus on the ability of the criteria to distinguish linear and nonlinear models. In the simulation studies, we consider three different...
Persistent link: https://www.econbiz.de/10011324708
In this paper a flexible GARCH-type model is developed with the aim of describing sign and size asymmetries in financial volatility as well as intermittent dynamics and excess of kurtosis. A sufficient condition for strict stationarity and ergodicity of the model is established and the existence...
Persistent link: https://www.econbiz.de/10011807314
We develop a regime switching vector autoregression where artificial neural networks drive time variation in the coefficients of the conditional mean of the endogenous variables and the variance covariance matrix of the disturbances. The model is equipped with a stability constraint to ensure...
Persistent link: https://www.econbiz.de/10012799695
In this paper the performance of information criteria and a test against SETAR nonlinearity for outlier contaminated time series are investigated. Additive outliers can seriously influence the properties of the underlying time series and hence of linearity tests, resulting in spurious test...
Persistent link: https://www.econbiz.de/10011521180
This paper contains a forecasting exercise on 30 time series, ranging on several fields, from economy to ecology. The statistical approach to artificial neural networks modelling developed by the author is compared to linear modelling and to other three well-known neural network modelling...
Persistent link: https://www.econbiz.de/10010281250
In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the conditional variance to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterizations describe both nonlinearity and structural change in the...
Persistent link: https://www.econbiz.de/10010281252