Showing 1 - 10 of 627
A new regularization method for regression models is proposed. The criterion to be minimized contains a penalty term which explicitly links strength of penalization to the correlation between predictors. As the elastic net, the method encourages a grouping effect where strongly correlated...
Persistent link: https://www.econbiz.de/10010266210
Several approaches for subset recovery and improved forecasting accuracy have been proposed and studied. One way is to apply a regularization strategy and solve the model selection task as a continuous optimization problem. One of the most popular approaches in this research field is given by...
Persistent link: https://www.econbiz.de/10010291802
We use lasso methods to shrink, select and estimate the network linking the publicly-traded subset of the world's top 150 banks, 2003-2014. We characterize static network connectedness using full-sample estimation and dynamic network connectedness using rolling-window estimation. Statistically,...
Persistent link: https://www.econbiz.de/10011440136
We apply the Diebold-Yilmaz connectedness index methodology on sovereign credit default swaps (SCDSs) to estimate the network structure of global sovereign credit risk. In particular, using the elastic net estimation method, we separately estimate networks of daily SCDS returns and volatilities...
Persistent link: https://www.econbiz.de/10011440137
This article introduces lassopack, a suite of programs for regularized regression in Stata. lassopack implements lasso, square-root lasso, elastic net, ridge regression, adaptive lasso and post-estimation OLS. The methods are suitable for the high-dimensional setting where the number of...
Persistent link: https://www.econbiz.de/10011984641
This paper investigates and extends the computationally attractive nonparametric random coefficients estimator of Fox, Kim, Ryan, and Bajari (2011). We show that their estimator is a special case of the nonnegative LASSO, explaining its sparse nature observed in many applications. Recognizing...
Persistent link: https://www.econbiz.de/10012099343
This paper investigates and extends the computationally attractive nonparametric random coefficients estimator of Fox, Kim, Ryan, and Bajari (2011). We show that their estimator is a special case of the nonnegative LASSO, explaining its sparse nature observed in many applications. Recognizing...
Persistent link: https://www.econbiz.de/10012109949
In this paper, we apply Ridge Regression, the Lasso and the Elastic Net to a rich and reliable data set of condominiums sold in Berlin, Germany, between 1996 and 2013. We their predictive performance in a rolling window design to a simple linear OLS procedure. Our results suggest that Ridge...
Persistent link: https://www.econbiz.de/10012385446
Forecasting stock returns is extremely challenging in general, and this task becomes even more difficult given the turbulent nature of the Chinese stock market. We address the stock selection process as a statistical learning problem and build cross-sectional forecast models to select individual...
Persistent link: https://www.econbiz.de/10012602815
Since the global financial crisis, major central banks gradually switched to unconventional monetary policies (UMPs) as part of their efforts to directly influence the long-term interest rates. This study analyzes the impact of conventional/unconventional monetary policies on sovereign bond...
Persistent link: https://www.econbiz.de/10012628453