Showing 1 - 10 of 5,615
Heterogeneous effects are prevalent in many economic settings. As the functional form between outcomes and regressors is generally unknown a priori, a semiparametric negative binomial count data model is proposed which is based on the local likelihood approach and generalized product kernels....
Persistent link: https://www.econbiz.de/10011725170
Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, and/or non-mutually exclusive "treatments". Consider the linear regression of Y onto X in a subpopulation homogenous in...
Persistent link: https://www.econbiz.de/10011941544
This article examines the spatially varying effect of age on single-family house (SFH) prices. Age has been shown to be a key driver for house depreciation and is usually associated with a negative price effect. In practice, however, there exist deviations from this behavior which are referred...
Persistent link: https://www.econbiz.de/10013205819
This paper considers a nonparametric regression model for cross-sectional data in the presence of common shocks. Common shocks are allowed to be very general in nature; they do not need to be finite dimensional with a known (small) number of factors. I investigate the properties of the...
Persistent link: https://www.econbiz.de/10011755340
This paper proposes a fully nonparametric kernel method to account for observed covariates in regression discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that conditioning on covariates reduces the asymptotic variance and allows estimating the...
Persistent link: https://www.econbiz.de/10011786988
Binscatter is very popular in applied microeconomics. It provides a flexible, yet parsimonious way of visualizing and summarizing "big data" in regression settings, and it is often used for informal testing of substantive hypotheses such as linearity or monotonicity of the regression function....
Persistent link: https://www.econbiz.de/10012144724
We consider the problem of constructing honest confidence intervals (CIs) for a scalar parameter of interest, such as the regression discontinuity parameter, in nonparametric regression based on kernel or local polynomial estimators. To ensure that our CIs are honest, we use critical values that...
Persistent link: https://www.econbiz.de/10012215412
Central limit theorems are developed for instrumental variables estimates of linear and semi-parametric partly linear regression models for spatial data. General forms of spatial dependenceand heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss...
Persistent link: https://www.econbiz.de/10010288343
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well...
Persistent link: https://www.econbiz.de/10010288370
In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which...
Persistent link: https://www.econbiz.de/10010310762