Showing 1 - 6 of 6
We consider a Cramér–Lundberg model representing the surplus of an insurance company under a general reinsurance control process. We aim to minimise the expected time during which the surplus is bounded away from its own running maximum by at least d0(discounted at a preference rate δ0) by...
Persistent link: https://www.econbiz.de/10015198558
Consider an insurance company whose surplus is modelled by an arithmetic Brownian motion of not necessarily positive drift. Additionally, the insurer has the possibility to invest in a stock modelled by a geometric Brownian motion independent of the surplus. Our key variable is the (absolute)...
Persistent link: https://www.econbiz.de/10013200687
The crisis caused by the outbreak of COVID-19 revealed the global unpreparedness for handling the impact of a pandemic. In this paper, we present a first quarter chronicle of COVID-19 in Hubei China, Italy and Spain, particularly focusing on infection speed, death and fatality rates. By...
Persistent link: https://www.econbiz.de/10013200648
In this paper, we consider a company that wishes to determine the optimal reinsurance strategy minimising the total expected discounted amount of capital injections needed to prevent the ruin. The company's surplus process is assumed to follow a Brownian motion with drift, and the reinsurance...
Persistent link: https://www.econbiz.de/10013200741
Persistent link: https://www.econbiz.de/10013200803
In this paper, we consider a company that wishes to determine the optimal reinsurance strategy minimising the total expected discounted amount of capital injections needed to prevent the ruin. The company's surplus process is assumed to follow a Brownian motion with drift, and the reinsurance...
Persistent link: https://www.econbiz.de/10012606401