Showing 1 - 10 of 9,964
This paper considers a general class of stochastic dynamic choice models with discrete and continuous decision variables. This class contains a variety of models that are useful for modeling intertemporal household decisions under risk. Our examples are drawn from the field of development...
Persistent link: https://www.econbiz.de/10010325850
In recent years support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a moving...
Persistent link: https://www.econbiz.de/10010274143
In most of the empirical research on capital markets, stock market indexes are used as proxies for the aggregate market development. In previous work we found that a particular market segment might be less efficient than the whole market and hence easier to forecast. In this paper we extend the...
Persistent link: https://www.econbiz.de/10010291063
Persistent link: https://www.econbiz.de/10011807281
Machine Learning models are often considered to be "black boxes" that provide only little room for the incorporation of theory (cf. e.g. Mukherjee, 2017; Veltri, 2017). This article proposes so-called Dynamic Factor Trees (DFT) and Dynamic Factor Forests (DFF) for macroeconomic forecasting, which...
Persistent link: https://www.econbiz.de/10012546027
This study presents an extension of the Gaussian process regression model for multiple-input multiple-output forecasting. This approach allows modelling the cross-dependencies between a given set of input variables and generating a vectorial prediction. Making use of the existing correlations in...
Persistent link: https://www.econbiz.de/10011650323
Purpose of the article: The paper is focused on the forecast of stock markets of the Central European countries, known as V4, by means of soft computing. The tested model is constructed by a combination of fuzzy logic and artificial neural networks. A total of four SAX, PX, BUX, WIG stock...
Persistent link: https://www.econbiz.de/10015186072
Uncertainty may affect economic behavior of individuals and firms in a wide variety of ways, with typically negative consequences for economic growth. It is due to this fact, combined with rising political uncertainty observed lately in many countries, that uncertainty has gained increasing...
Persistent link: https://www.econbiz.de/10012603405
Artificial neural networks have become increasingly popular for statistical model fitting over the last years, mainly due to increasing computational power. In this paper, an introduction to the use of artificial neural network (ANN) regression models is given. The problem of predicting the GDP...
Persistent link: https://www.econbiz.de/10011902158
Machine learning (ML) is a novel method that has applications in asset pricing and that fits well within the problem of measurement in economics. Unlike econometrics, ML models are not designed for parameter estimation and inference, but similar to econometrics, they address, and may be better...
Persistent link: https://www.econbiz.de/10014332691