Showing 1 - 3 of 3
In this paper, we propose a multivariate quantile regression method which enables localized analysis on conditional quantiles and global comovement analysis on conditional ranges for high-dimensional data. The proposed method, hereafter referred to as FActorisable Sparse Tail Event Curves, or...
Persistent link: https://www.econbiz.de/10011380701
For many applications, analyzing multiple response variables jointly is desirable because of their dependency, and valuable information about the distribution can be retrieved by estimating quantiles. In this paper, we propose a multi-task quantile regression method that exploits the potential...
Persistent link: https://www.econbiz.de/10011663439
A multivariate quantile regression model with a factor structure is proposed to study data with many responses of interest. The factor structure is allowed to vary with the quantile levels, which makes our framework more flexible than the classical factor models. The model is estimated with the...
Persistent link: https://www.econbiz.de/10012433248