Showing 1 - 10 of 1,239
This paper considers nonparametric identification and estimation of the regression function when a covariate is mismeasured. The measurement error need not be classical. Employing the small measurement error approximation, we establish nonparametric identification under weak and...
Persistent link: https://www.econbiz.de/10014581847
Slope coefficients in rank-rank regressions are popular measures of intergenerational mobility, for instance in regressions of a child's income rank on their parent's income rank. In this paper, we first point out that commonly used variance estimators such as the homoskedastic or robust...
Persistent link: https://www.econbiz.de/10014480485
Generalized single-index models are natural extensions of linear models and circumvent the so-called curse of dimensionality. They are becoming increasingly popular in many scientific fields including biostatistics, medicine, economics and financial econometrics. Estimating and testing the model...
Persistent link: https://www.econbiz.de/10010270710
Truncation or censoring of the response variable in a regression model is a problem in many applications, e.g. when the response is insurance claims or the durations of unemployment spells. We introduce a local polynomial regression estimator which can deal with such truncated or censored...
Persistent link: https://www.econbiz.de/10010273938
autocorrelation coefficient of the error term in a Cliff and Ord type model. The main finding is that a Wald-test based on GMM …
Persistent link: https://www.econbiz.de/10010261344
This paper presents a generalized moments (GM) approach to estimating an R-th order spatial regressive process in a panel data error component model. We derive moment conditions to estimate the parameters of the higher order spatial regressive process and the optimal weighting matrix required to...
Persistent link: https://www.econbiz.de/10010264361
This paper generalizes the approach to estimating a first-order spatial autoregressive model with spatial autoregressive disturbances (SARAR(1,1)) in a cross-section with heteroskedastic innovations by Kelejian and Prucha (2008) to the case of spatial autoregressive models with spatial...
Persistent link: https://www.econbiz.de/10010264403
One important goal of this study is to develop a methodology of inference for a widely used Cliff-Ord type spatial model containing spatial lags in the dependent variable, exogenous variables, and the disturbance terms, while allowing for unknown heteroskedasticity in the innovations. We first...
Persistent link: https://www.econbiz.de/10010264476
In this paper we specify a linear Cliff and Ord-type spatial model. The model allows for spatial lags in the dependent variable, the exogenous variables, and disturbances. The innovations in the disturbance process are assumed to be heteroskedastic with an unknown form. We formulate a multi-step...
Persistent link: https://www.econbiz.de/10010264508
This paper develops an estimator for higher-order spatial autoregressive panel data error component models with spatial autoregressive disturbances, SARAR(R,S). We derive the moment conditions and optimal weighting matrix without distributional assumptions for a generalized moments (GM)...
Persistent link: https://www.econbiz.de/10010264566