Showing 1 - 10 of 109
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10010958683
In this paper, we investigate the buy and sell arrival process in a limit order book market. Using an intensity framework allows to estimate the simultaneous buy and sell intensity and to derive a continuous-time measure for the buy-sell pressure in the market. Based on limit order book data...
Persistent link: https://www.econbiz.de/10005543579
This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. A categorization of the durations allows us to reformulate the PH model as an ordered response model based on extreme value distributed errors....
Persistent link: https://www.econbiz.de/10005543581
Bayesian learning claims that the strength of the price impact of unanticipated information depends on the relative precision of traders' prior and posterior beliefs. In this paper, we test for this implication of Bayesian models by analyzing intraday price responses of T-bond futures to U.S....
Persistent link: https://www.econbiz.de/10005407061
Persistent link: https://www.econbiz.de/10011198395
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed at high frequencies, such as cumulated trading volumes. We introduce a flexible point-mass...
Persistent link: https://www.econbiz.de/10010728001
We propose an iterative procedure to efficiently estimate models with complex log-likelihood functions and the number of parameters relative to the observations being potentially high. Given consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields...
Persistent link: https://www.econbiz.de/10010735445
We propose a Bayesian framework for nowcasting GDP growth in real time. Using vintage data on macroeconomic announcements we set up a state space system connecting latent GDP growth rates to agencies' releases of GDP and other economic indicators. We propose a Gibbs sampling scheme to filter out...
Persistent link: https://www.econbiz.de/10010765282
We propose a methodology for forecasting the systemic impact of financial institutions in interconnected systems. Utilizing a five-year sample including the 2008/9 financial crisis, we demonstrate how the approach can be used for the timely systemic risk monitoring of large European banks and...
Persistent link: https://www.econbiz.de/10010786469
An important claim of Bayesian learning and a standard assumption in price discovery models is that the strength of the price impact of unanticipated information depends on the precision of the news. In this paper, we test for this assumption by analyzing intra-day price responses of CBOT T-bond...
Persistent link: https://www.econbiz.de/10010984848