Showing 1 - 10 of 21
This paper provides a new approach to constructing confidence intervals for nonparametric drift and diffusion functions in the continuous-time diffusion model via empirical likelihood (EL). The log EL ratios are constructed through the estimating equations satisfied by the local linear...
Persistent link: https://www.econbiz.de/10008493180
Stable autoregressive models of known finite order are considered with martingale differences errors scaled by an unknown nonparametric time-varying function generating heterogeneity. An important special case involves structural change in the error variance, but in most practical cases the...
Persistent link: https://www.econbiz.de/10005593399
Stable autoregressive models of known finite order are considered with martingale differences errors scaled by an unknown nonparametric time-varying function generating heterogeneity. An important special case involves structural change in the error variance, but in most practical cases the...
Persistent link: https://www.econbiz.de/10005593627
This paper proposes a novel positive nonparametric estimator of the conditional variance function without reliance on logarithmic or other transformations. The estimator is based on an empirical likelihood modification of conventional local level nonparametric regression applied to squared mean...
Persistent link: https://www.econbiz.de/10005093922
This paper studies robust inference in autoregression around a polynomial trend with stable autoregressive roots under non-stationary volatility. The formulation of the volatility process is quite general including many existing deterministic and stochastic non-stationary volatility...
Persistent link: https://www.econbiz.de/10005100122
A scalar pth-order autoregression (AR(p)) is considered with heteroskedasticity of the unknown form delivered by a transition function of time. A limit theory is developed and three heteroskedasticity-robust test statistics are proposed for inference, one of which is based on the nonparametric...
Persistent link: https://www.econbiz.de/10005315173
Persistent link: https://www.econbiz.de/10005192754
This paper proposes empirical likelihood based inference methods for causal effects identified from regression discontinuity designs. We consider both the sharp and fuzzy regression discontinuity designs and treat the regression functions as nonparametric. The proposed inference procedures do...
Persistent link: https://www.econbiz.de/10009019983
Persistent link: https://www.econbiz.de/10009358102
This paper proposes empirical likelihood based inference methods for causal effects identified from regression discontinuity designs. We consider both the sharp and fuzzy regression discontinuity designs and treat the regression functions as nonparametric. The proposed inference procedures do...
Persistent link: https://www.econbiz.de/10011126270