Showing 1 - 10 of 168
Hall & Yao (2003) showed that, for ARCH/GARCH, i.e. autoregressive conditional heteroscedastic/generalised autoregressive conditional heteroscedastic, models with heavy‐tailed errors, the conventional maximum quasilikelihood estimator suffers from complex limit distributions and slow...
Persistent link: https://www.econbiz.de/10011126223
Motivated by prediction problems for time series with heavy-tailed marginal distributions, we consider methods based on `local least absolute deviations' for estimating a regression median from dependent data. Unlike more conventional `local median' methods, which are in effect based on locally...
Persistent link: https://www.econbiz.de/10011126408
We discuss moving-maximum models, based on weighted maxima of independent random variables, for extreme values from a time series. The models encompass a range of stochastic processes that are of interest in the context of extreme-value data. We show that a stationary stochastic process whose...
Persistent link: https://www.econbiz.de/10011126665
We consider local least absolute deviation (LLAD) estimation for trend functions of time series with heavy tails which are characterised via a symmetric stable law distribution. The setting includes both causal stable ARMA model and fractional stable ARIMA model as special cases. The asymptotic...
Persistent link: https://www.econbiz.de/10011071339
In order to develop statistical tests for the Lyapunov exponents of deterministic dynamical systems, we develop bootstrap tests based on empirical likelihood for percentiles and expectiles of strictly stationary processes. The percentiles and expectiles are estimated in terms of asymmetric least...
Persistent link: https://www.econbiz.de/10005766365
We propose a new method for estimating common factors of multiple time series. One distinctive feature of the new approach is that it is applicable to some nonstationary time series. The unobservable, nonstationary factors are identified by expanding the white noise space step by step, thereby...
Persistent link: https://www.econbiz.de/10005559425
In order to develop statistical tests for the Lyapunov exponents of deterministic dynamical systems, we develop bootstrap tests based on empirical likelihood for percentiles and expectiles of strictly stationary processes. The percentiles and expectiles are estimated in terms of asymmetric least...
Persistent link: https://www.econbiz.de/10005751407
Persistent link: https://www.econbiz.de/10005610387
We provide a direct proof for consistency and asymptotic normality of Gaussian maximum likelihood estimators for causal and invertible autoregressive moving-average (ARMA) time series models, which were initially established by Hannan [Journal of Applied Probability (1973) vol. 10, pp. 130-145]...
Persistent link: https://www.econbiz.de/10005315161
The class of generalized autoregressive conditional heteroscedastic (GARCH) models has proved particularly valuable in modelling time series with time varying volatility. These include financial data, which can be particularly heavy tailed. It is well understood now that the tail heaviness of...
Persistent link: https://www.econbiz.de/10005100144