Showing 1 - 10 of 102
This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. Crucially, no sieve or entropy measures are required and so rates do not depend on the rate of convergence...
Persistent link: https://www.econbiz.de/10005077203
Consistency of Bayesian nonparametric procedures has been the focus of a considerable amount of research. Here we deal with strong consistency for Bayesian density estimation. An awkward consequence of inconsistency is pointed out. We investigate reasons for inconsistency and precisely identify...
Persistent link: https://www.econbiz.de/10005577353
The past decade has seen a remarkable development in the area of Bayesian nonparametric inference both from a theoretical and applied perspective. As for the latter, the celebrated Dirichlet process has been successfully exploited within Bayesian mixture models leading to many interesting...
Persistent link: https://www.econbiz.de/10005135386
The present paper provides exact expressions for the probability distribution of linear functionals of the two–parameter Poisson–Dirichlet process. Distributional results that follow from the application of an inversion formula for a (generalized) Cauchy–Stieltjes transform are achieved....
Persistent link: https://www.econbiz.de/10004972506
In this work we propose a Bayesian nonparametric approach for tackling statistical problems related to EST surveys. In particular, we provide estimates for: a) the coverage, defined as the proportion of unique genes in the library represented in the given sample of reads; b) the number of new...
Persistent link: https://www.econbiz.de/10004980480
Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Indeed, many popular nonparametric priors, such as the Dirichlet and the Pitman–Yor process priors, select...
Persistent link: https://www.econbiz.de/10010842840
Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of...
Persistent link: https://www.econbiz.de/10011056550
Persistent link: https://www.econbiz.de/10011036032
Persistent link: https://www.econbiz.de/10010998671
In recent years the Dirichlet process prior has experienced a great success in the context of Bayesian mixture modelling. The idea of overcoming discreteness of its realizations by exploiting it in hierarchical models, combined with the development of suitable sampling techniques, represent one...
Persistent link: https://www.econbiz.de/10005077206