Showing 1 - 10 of 213
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity....
Persistent link: https://www.econbiz.de/10005100804
The main contribution of this paper is twofold. First, we derive the consistency and asymptotic normality of the estimated autoregressive sieve parameters when the data are generated by a stationary linear process with martingale difference errors that are possibly subject to conditional...
Persistent link: https://www.econbiz.de/10005100842
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity....
Persistent link: https://www.econbiz.de/10005083322
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression eroor as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity....
Persistent link: https://www.econbiz.de/10005816215
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity....
Persistent link: https://www.econbiz.de/10005729624
The main contribution of this paper is to propose and theoretically justify bootstrap methods for regressions where some of the regressors are factors estimated from a large panel of data. We derive our results under the assumption that √T/N→c, where 0≤c0, a two-step residual-based...
Persistent link: https://www.econbiz.de/10011183706
The main contribution of this paper is to study the applicability of the bootstrap to estimating the distribution of the standard test of overidentifying restrictions of Hansen (1982) when the model is globally identified but the rank condition fails to hold (lack of first order local...
Persistent link: https://www.econbiz.de/10011183714
The main contribution of this paper is to propose bootstrap methods for realized volatility-like estimators defined on pre-averaged returns. In particular, we focus on the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009). This statistic can be written (up to a...
Persistent link: https://www.econbiz.de/10010851277
This paper proposes and theoretically justifies bootstrap methods for regressions where some of the regressors are factors estimated from a large panel of data. We derive our results under the assumption that T/N→c, where 0≤c∞ (N  and T  are the cross-sectional and the time series...
Persistent link: https://www.econbiz.de/10011052190
We propose a bootstrap method for statistics that are a function of multivariate high frequency returns such as realized regression, covariance and correlation coefficients. We show that the finite sample performance of the bootstrap is superior to the existing first-order asymptotic theory....
Persistent link: https://www.econbiz.de/10011052229