Showing 1 - 10 of 286
This paper checks the sensitivity of two adaptive heteroskedastic estimators suggested by Li and Stengos (1994) and Roy (2002) for an error component regression model to misspecification of the form of heteroskedasticity. In particular, we run Monte Carlo experiments using the heteroskedasticity...
Persistent link: https://www.econbiz.de/10009228484
Persistent link: https://www.econbiz.de/10008925357
This paper studies the performance of panel unit root tests when spatial effects are present that account for cross-section correlation. Monte Carlo simulations show that there can be considerable size distortions in panel unit root tests when the true specification exhibits spatial error...
Persistent link: https://www.econbiz.de/10005504091
This paper contrasts the performance of heterogeneous and shrinkage estimators versus the more traditional homogeneous panel data estimators. The analysis utilizes a panel data set from 21 French regions over the period 1973–1998 and a dynamic demand specification to study the gasoline demand...
Persistent link: https://www.econbiz.de/10005382203
This paper focuses on the estimation and predictive performance of several estimators for the dynamic and autoregressive spatial lag panel data model with spatially correlated disturbances. In the spirit of Arellano and Bond (1991) and Mutl (2006), a dynamic spatial GMM estimator is proposed...
Persistent link: https://www.econbiz.de/10011125930
This paper derives the Best Linear Unbiased Predictor (BLUP) for a spatial nested error components panel data model. This predictor is useful for panel data applications that exhibit spatial dependence and a nested (hierarchical) structure. The predictor allows for unbalancedness in the number...
Persistent link: https://www.econbiz.de/10010786464
type="main" xml:lang="en" <title type="main">Abstract</title> <p>This study focuses on the estimation and predictive performance of several estimators for the dynamic and autoregressive spatial lag panel data model with spatially correlated disturbances. In the spirit of Arellano and Bond (1991) and Mutl (2006), a dynamic...</p>
Persistent link: https://www.econbiz.de/10011031951
This paper sets up a nested random effects spatial autoregressive panel data model to explain annual house price variation for 2000-2007 across 353 local authority districts in England. The estimation problem posed is how to allow for the endogeneity of the spatial lag variable producing the...
Persistent link: https://www.econbiz.de/10010751563
This paper sets up a nested random effects spatial autoregressive panel data model to explain annual house price variation for 2000–2007 across 353 local authority districts in England. The estimation problem posed is how to allow for the endogeneity of the spatial lag variable producing the...
Persistent link: https://www.econbiz.de/10010753559
This paper contrasts the performance of heterogeneous and shrinkage estimators versus the more traditional homogeneous panel data estimators. The analysis utilizes a panel data set from 21 French regions over the period 1973-1998 and a dynamic demand specification to study the gasoline demand in...
Persistent link: https://www.econbiz.de/10005086457