Showing 1 - 10 of 22
We propose a completely kernel based method of estimating the call price function or the state price density of options. The new estimator of the call price function fulfills the constraints like monotonicity and convexity given in Breeden and Litzenberger (1978) without necessarily estimating...
Persistent link: https://www.econbiz.de/10005564847
We propose a completely kernel based method of estimating the call price function or the state price density of options. The new estimator of the call price function fulfills the constraints like monotonicity and convexity given in Breeden and Litzenberger (1978) without necessarily estimating...
Persistent link: https://www.econbiz.de/10009219838
Persistent link: https://www.econbiz.de/10005733996
A monotone estimate of the conditional variance function in a heteroscedastic, nonpara- metric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an esti- mate of the inverse variance...
Persistent link: https://www.econbiz.de/10009216878
In this paper we present a detailed numerical comparison of three monotone nonparametric kernel regression estimates, which isotonize a nonparametric curve estimator. The first estimate is the classical smoothed isotone estimate of Brunk (1958). The second method has recently been proposed by...
Persistent link: https://www.econbiz.de/10009219858
In this paper a new method for monotone estimation of a regression function is proposed. The estimator is obtained by the combination of a density and a regression estimate and is appealing to users of conventional smoothing methods as kernel estimators, local polynomials, series estimators or...
Persistent link: https://www.econbiz.de/10009295180
For the common binary response model we propose a direct method for the nonparametric estimation of the effective dose level ED? (0 ? 1). The estimator is obtained by the composition of a nonparametric estimate of the quantile response curve and a classical density estimate. The new method...
Persistent link: https://www.econbiz.de/10009295201
A central limit theorem for the weighted integrated squared error of kernel-type estimators of the first two derivatives of a nonparametric regression function is proved by using results for martingale differences and U-statistics. The results focus on the setting of the Nadaraya-Watson...
Persistent link: https://www.econbiz.de/10005259358
We consider inverse regression models with convolution-type operators which mediate convolution on (d=1) and prove a pointwise central limit theorem for spectral regularisation estimators which can be applied to construct pointwise confidence regions. Here, we cope with the unknown bias of such...
Persistent link: https://www.econbiz.de/10008521096
We consider the problem of testing hypotheses regarding the covariance matrix of multivariate normal data, if the sample size s and dimension n satisfy . Recently, several tests have been proposed in the case, where the sample size and dimension are of the same order, that is y[set membership,...
Persistent link: https://www.econbiz.de/10005223728